
Energy-aware Fault-tolerant Scheduling Scheme
based on Intelligent Prediction Model for Cloud

Data Center
Avinab Marahatta1,2, Ce Chi2, Fa Zhang2, Zhiyong Liu2

1University of Chinese Academy of Sciences, China
2High Performance Computer Research Center, Institute of Computing Technology,

Chinese Academy of Sciences, China
Email:{avinab.marahatta, chice18s, zhangfa, zyliu}@ict.ac.cn

Abstract—As cloud computing becomes increasingly popular,
more and more applications are migrated to clouds. Due to
multi-step computation of data streams and heterogeneous task
dependencies, task failure occurs frequently, resulting in poor
user experience and additional energy consumption. To reduce
task execution failure as well as energy consumption, we propose
a novel energy-aware proactive fault-tolerant scheduling scheme
for cloud data centers(CDCs) in this paper. Firstly, a prediction
model based on machine learning approach is trained to classify
the arriving tasks into “failure-prone tasks” and “non-failure-
prone tasks” according to the predicted failure rate. Then, two
efficient scheduling mechanisms are proposed to allocate two
types of tasks to the most appropriate hosts in a CDC. Vector
reconstruction method is developed to construct super tasks from
failure-prone tasks and schedule these super tasks and non-
failure-prone tasks to most suitable physical host, separately. All
the tasks are scheduled in an earliest-deadline-first manner. Our
evaluation results show that the proposed scheme can intelligently
predict task failure and achieves better fault tolerance and
reduces total energy consumption than existing schemes.

Index Terms—Cloud computing, Cloud data center, Schedul-
ing, Fault-tolerance, Energy-efficiency, Task failure, Prediction

I. INTRODUCTION

Cloud data center (CDC) is the home that supports the
computation, storage and various applications of individuals
and enterprises. CDC provides facilities to host a wide range
of applications, such as health care, scientific computing,
smart grid, e-commerce and nuclear science [1], in different
domains. The task and resource failures are inevitable due to
the growing number of CDC resources which provide ICT
infrastructures. However, reliable on-demand resources are
needed for service provider to fulfill Service Level Agreement
(SLA) of customers [2]. Therefore, it is of great significance
to ensure the reliability and availability in such systems [3].

However, modeling and examining dynamic fault-tolerant
technique for virtualized CDC is challenging. First, cloud
applications are usually large-scale and consist of a huge
number of distributed computing nodes. The complex structure
and fault-tolerant behavior of heterogeneous CDC applications

This work was partially supported by the National Key Research and
Development Program of China (grant number 2017YFB1010001); the Na-
tional Natural Science Foundation of China (grant numbers 61520106005,
61761136014). The Corresponding Author is Zhiyong Liu (zyliu@iact.ac.cn).

are hard to describe. Second, CDC applications dynamically
adjust the virtual machine(VM) configurations to meet user
requests which require multi-dimensional resources, such as
CPU, RAM, disk storage. The concurrency and uncertainty
of requests will rise the complication of model validation and
verification in the scheduling.

Proactive fault tolerant techniques are widely adopted in
CDCs [4], [5]. However, efficient implementation of proactive
fault tolerance relies heavily on the prior knowledge of the
failed tasks. Generally, the task is failed due to over-utilization
of resources, unavailable resources, hardware failures, exe-
cution time or execution cost exceeds the threshold value,
required libraries are not installed properly, system running
out of memory or disk space, and so on.

Previous studies have adopted various fault tolerance mech-
anisms, such as check-pointing [6], [7], migration [4], load
balancing [8], replication [9], [10], retry [11], [12], task re-
submission [13], etc. Existing failure prediction techniques are
mainly based on statistical approaches [5]. Recently, data have
very complex structures and parameters. So, simple statistical
approach might not capture the patterns in more complex
data. Some studies have used machine learning approach to
predict task failure [14], [15], and they have not leveraged the
prediction to facilitate the task scheduling. In addition, while
the spare resources used in proactive fault-tolerant schemes,
that will result in additional energy consumption, very limited
fault-tolerant studies take optimization of energy consumption
into consideration.

In this paper, our aim is to predict a task failure according
to the requested resources before the actual failure occurs,
and leverage the prediction to design task scheduling scheme,
thus to reduce the task execution failure as well as the
total energy consumption. To this end, a novel Prediction
based Energy-aware Fault-tolerant Scheduling scheme (PEFS)
is proposed. The scheme involves two stages: 1) prediction
of task failure probability, and 2) task scheduling. In the
first stage, task parameters (involving the requested resources,
actually allocated resources, and whether failure occurred) are
gathered from historical data set. Then, all the task parameters
are inserted into TensorFlow1 as inputs. Using deep neural
network approach, a model is trained to predict the failure

1https://www.tensorflow.org/.

978-1-5386-7466-6/18/$31.00 c©2018 IEEE

2
rate of each arriving task. In this way, all the arriving tasks
can be classified into failure-prone tasks and non-failure-
prone tasks based on model outputs. In the second stage, a
scheduling algorithm based on vector bin packing is proposed
to schedule the two types of tasks efficiently. The main
difference between these two scheduling processes is that, for
the failure-prone tasks, super tasks are generated firstly based
on an elegant vector reconstruction method for fault-tolerant
purpose. Replication strategy is applied to replicate only the
fault-prone tasks, then arranged into super tasks in a way of
vector reconstruction that the execution of different copies of
the tasks in different hosts will not be overlapped so that
redundant execution will be avoided. To verify the accuracy
of the prediction, comprehensive experiments are conducted to
compare the predicted failures with the actual failures. We also
compare the total energy consumption, resource utilization,
and task failure ratio of the proposed scheme with existing
methods to show its superiority.

The main contribution of this work includes:
• Use deep neural network for prediction of possible fail-

ures of tasks, and train a model that can predict failure
tasks with accuracy above 84%.

• Arriving tasks are classified into two categories based
on prediction results, and two scheduling schemes are
proposed to schedule the two types of tasks separately to
reduce task failure rate as well as energy consumption.

• A unique fault-tolerant mechanism is developed to sched-
ule failure-prone task by constructing super tasks based
on vector reconstruction method.

• Conduct extensive simulation experiments in CloudSim2

toolkit to evaluate our scheme. The results validate that,
our scheme outperforms the state-of-the-art in terms of
failure ratio, resource utilization, and energy consump-
tion.

The rest of the paper is organized as follows: Section
II discusses the related work and Section III presents the
system design and models. Section IV describes the proposed
scheduling scheme. Section V details the experimental setup
and quantitative analysis. Section VI reports the experimental
results and discussion. Section VII concludes the paper.

II. RELATED WORK

When multiple task instances from different applications
start to execute on numerous hosts, some of the hosts may
fail accidentally, resulting in a fault in the system. This
phenomenon is usually avoided by fault tolerance mechanism
[9]. Various factors lead to host failure. Besides, a failure event
usually stimulates another fault event. These failures may
include operating system crashes, network partitions, hardware
malfunctions, power outages, abrupt software failures, etc.
[16].

The existing fault-tolerant techniques in CDCs mainly in-
clude replication, check-point, job migration, retry, task resub-
mission, etc. Some studies [17], [18] introduced methods based
on certain principles, such as retry, resubmission, replication,
renovation of software, screening and migration, to harmonize

2http://www.cloudbus.org/cloudsim/.

fault-tolerant mechanism with CDC task scheduling. However,
for parallel and distributed computing systems, the most
adopted and acknowledged method is to replicate data to
multiple hosts [9].

A heuristic approach called resubmission impact has been
proposed [19]. However, the resubmission may cause consider-
able delay. A classification based energy-aware fault-tolerant
dynamic scheduling scheme has been presented in [9] with
elastic resource provisioning. The tasks are classified using
Bayes classifier, replicated and mapped to most suitable virtual
machines.

A rearrangement based improved fault-tolerant scheduling
algorithm (RTFR) has been presented to deal with the dynamic
scheduling issue for tasks in cloud systems [20]. A primary-
backup model is adopted to realize fault-tolerance in this
method. The corresponding backup copy will be released after
the primary replica is completed, so as to release the resource
it occupies. Besides, the waiting tasks can be rearranged
to utilize the released resources. Whereas in most existing
algorithms, after the task is sent to the waiting queue of the
virtual machine, the execution sequence is fixed and cannot
be changed.

The backup overlapping mechanism and virtual machine
migration strategy are adopted in cloud to improve resource
utilization [21]. It is a primary-backup approach similar to
the proposal in [20]. A dynamic integrated task scheduling
algorithm is presented in [22] by modifying breadth first
search algorithm to find the overall optimal virtual machine
for each task. The above techniques can not only minimize the
makespan and response time for tasks, but also can be easily
integrate with other virtual machine management techniques
to reduce energy consumption and improve fault tolerance.

By observing resource behavior during job execution, vari-
ous statistics and probability based techniques can be used to
identify the failure rate of jobs. The history of resource failure
can be leveraged for reliable selection of resources and fault-
tolerant scheduling [23]. It depends on a scheduling indicator,
which is used to generate the scheduling decision whenever
a job arrives to a grid scheduler. The scheduling technique
selects resources with the lowest failure rate.

A multi-constrained load balancing fault-tolerant scheduling
is proposed to reduce the makespan, cost, and task failure rate
while improving resource utilization [24]. Resource selection
is made on the basis of initial failure rates, number of jobs
submitted, successfully executed jobs and processing capa-
bilities of the resources. A new scheduling approach named
PreAntPolicy is proposed [25] that consists of a prediction
model based on fractal mathematics and a scheduler on the
basis of an improved ant colony algorithm. The prediction
model determines whether to trigger the execution of the
scheduler by virtue of load trend prediction, and the sched-
uler is responsible for resource scheduling while minimizing
energy consumption under the premise of guaranteeing the
Quality-of-Service (QoS). The combination of energy-aware
optimal allocation and consolidation algorithm is developed to
as a bin packing problem with a minimum power consumption
objective [26].

An adaptive fault-tolerant job scheduling strategy is pro-

3
posed by [27]. It is a checkpointing method. The proposed
strategy dynamically updates the failure index based on the
successful completion of the assigned tasks, so as to maintain
grid failure index. The resource broker uses fault index from
the scheduler to apply different scheduling intensity for arriv-
ing tasks. The success and the fault index value of the resource
is decreased if job completes within the defined time.

As far as we know, no work has been done so far using
deep neural network to predict task failure and leveraging
the prediction information to facilitate the energy-aware fault-
tolerant scheduling in CDCs as we do in this paper.

III. MODEL DESIGN

As mentioned above, the Prediction based Energy-aware
Fault-tolerant Scheduling scheme (PEFS) proposed in this
paper involves two stages: 1) failure prediction and, 2) task
scheduling, as illustrated in Fig. 1. Predictor is designed based
on deep neural network to train and test the task in historical
data set (HDS). This predictor is used to predict the probability
of task failure, and based on this probability, tasks are clas-
sified into failure-prone and non-failure-prone tasks. Failure-
prone and non-failure-prone tasks are organized in failure-
prone task queue and non-failure task queue, respectively,
then schedule these types of tasks using scheduling method,
separately. The power model is adopted to address the energy
saving concern of the CDC. Similarly, the fault model is used
to design fault-tolerant mechanism for the failure-prone tasks.

A. Task and Resource Model

In a CDC environment, the service providers receive inde-
pendent tasks submitted by the end-users. A set of independent
tasks is given as T ={T1, T2, T3, · · ·, Tk }. Each task is
associated with a set of parameters Tϕ

k = T p
k , T

m
k , T s

k , where
T p
k , T

m
k and T s

k represents the CPU, RAM and disk storage
required to execute a given task Tk. In addition, Tk can be
modeled as Tk = (tak, t

d
k, t

l
k), where tak, t

d
k and tlk represents the

arrival time, the deadline and the work volume, respectively.
The tasks are categorized into failure-prone and non-failure-
prone tasks in accordance with their proneness to failures. A
set of failure-prone tasks is designed as T ={T1, T2, T3, · ·
·, Tl } for failure-prone scheduling process based on fault-
tolerant mechanism. Similarly, a set of non-failure-prone tasks
T ={T1, T2, T3, · · ·, Tl } is scheduled by using non-failure-
prone scheduling process.

A CDC consists of a set of hosts H = { H1, H2, · · ·, Hi

}, providing the physical infrastructures for creating virtu-
alized resources to satisfy the end-users requirements. V ϕ

j

is the virtual machine requirement, which is modeled as
V ϕ
j = {V p

j , V
m
j , V s

j }, where V p
j , V

m
j and V s

j represent the
parameters of CPU, RAM and disk storage, respectively.

B. Power Consumption Model

In this paper, the power consumption of the host Hi,
indicated as Pi, is expressed as below (based on energy
consumption model proposed in [28]).

Pi(t) = P idle
i + (Pmax

i − P idle
i)× Ui(t) (1)

where P idle
i represents the idle power consumption of the Hi.

Similarly, Pmax
i represents the maximum power consumption

of the Hi.
Assuming that all the CPU cores are homogeneous. i.e., c

= 1,2,· · ·, PEi: MIPSi,c = MIPSi,1. The CPU utilization
of the host Hi at time t, indicated as Ui(t), is defined as the
average percentage of the total allocated computing powers
of Vi(t) that is assigned to the Hi. It can be expressed as
following.

Ui(t) = (
1

PEi ×MIPSi,1
)

PEi∑
c=1

∑
j⊆Vi(t)

mipsj,c (2)

The total energy consumption of the host in time period [t1, t2]
is formulated as below:

Ei =

∫ t2

t1

Pi(Ui(t))dt (3)

where,
Ui(t): the utilization of the host Hi at time t; 0 ≤ Ui(t) ≤ 1.
PEi: the number of cores of the host Hi.
mipsj,c: the assigned MIPS of the cth core to the Vj on the
host Hi.
MIPSi,c: the max computing power capacity of the cth core
on the host Hi.

C. Fault-tolerant Model

The task failures may occur due to unavailability of re-
sources, hardware failures, execution cost and time exceed
than threshold value, system running out of memory or disk
space, over-utilization of resources, improper installation of
required libraries, and so on. These faults can be transient or
permanent, and are assumed to be independent. So, developing
fault-tolerant scheduling scheme needs to guarantee the dead-
line of all the tasks in the system that are met before faults
occurs even under the worst-case scenario.

As we know, replication strategy is widely used for fault
tolerance, which generally replicates tasks into two or more
copies, then schedule to different hosts. So, there are more
possibilities of wastage of resources and increase the unusual
energy consumption. Thus, in this paper, only failure-prone
tasks are replicated. First, three consecutive tasks are taken
from failure-prone task queue, and each task is replicated into
three copies. Then, vector reconstruction method is designed
to reconstruct super task from replicate copies as shown
in Section IV B and Fig. 3. Reconstructed super tasks are
mapped to the most suitable hosts, allocated with resources,
and then scheduled in different hosts, separately. The sequence
of replicate copies of tasks in super tasks are designed as
shown in Fig. 3, so that the execution of different copies of
the tasks in different hosts will not be overlapped to avoid
redundant execution.

IV. SCHEDULING SCHEME

Upon task arrival in the system, a task joins the queue
of the entire system in earliest-deadline-first manner. Then,

4

Fig. 1: System diagram.

predictor classifies the task into failure-prone task and non-
failure-prone task in accordance with their predicted failure
probability. Based on the classification, failure-prone task
queue and non-failure-prone task queue are generated. Vectors
are constructed for both failure-prone and non failure-prone
tasks before mapping to hosts. Then they are organized and
scheduled, separately, as shown in Algorithm 2.

A. Task Failure Prediction

The task failure prediction involves multiple steps as shown
in Fig. 2, which includes preprocessing, training the prepro-
cessed data, prediction of task failure as well as checks the
accuracy of predicted results.

Fig. 2: Deep neural network for task failure prediction.

The Internet Data Set3 [29] is used to train the predictor.
Let the data set used for normalization is defined by Z and
normalized data set is Ž. The equation (4) is used to normalize

the data set Z in the range (0, 1). Ži =
Zi − Zmin

Zmax − Zmin

(4)

where Zmax and Zmin are the maximum and minimum values
respectively obtained from data set Z. The normalized data
Ž is fed into the network as input which in followed by
training and evaluation of the network along with task failure
prediction.

The architecture with p−q−r input parameters are defined,
where p, q and r represents the number of neurons in input,
hidden and output layers, respectively. Actual failures are

3Whole experiment is conducted based on this data set.

extracted and analyzed to predict failure ratio of upcoming
new task on the CDC. Input data set (Z) and corresponding
output (Y) are constructed in equation (5), where each Zi

denotes one data point and Zj represents the number of actual
requests received.

Z =

Z11 Z21 . . . Z1l

Z21 Z22 . . . Z2l

...
...

. . .
...

Zi1 Zk2 . . . Zkl

 , Y =

Y1

Y2

...
Yk

 (5)

In this paper, percentage split is used to divide the data set into
training set and testing set, where training data is used to train
the prediction model and testing data is applied to evaluate the
accuracy of predicted results. The accuracy of the predicted
task failures is measured using root mean squared error (ě)
and mean absolute percentage error (ê) given by equation (6)
and equation (7), respectively.

ě =

√
1
n

n∑
i=1

(Yi − Y PF
i)2

(6)

ê= 1
n

n∑
i=1

|Yi−Y PF
i |

Yi

(7)

where, Y PF
i and Yi are the predicted and actual task

failure, respectively, and n is the total number of samples.
The prediction algorithm is described in Algorithm 1.

B. Vector Reconstruction

Failure-prone tasks are arranged in failure-prone task
queue in earliest-deadline-first manner. First, three con-
secutive tasks are taken from failure-prone task queue,
and each task is replicated into three copies. Then, vec-
tor reconstruction method is designed to reconstruct su-
per task from replicate copies as shown in Fig. 3,
SuperTask1, SuperTask2, SuperTask3. Each requested re-
sources of each task from consecutive three tasks is evaluated,
then highest requested resource values are chosen, i.e, resource

5
Algorithm 1 Failure Prediction

1: procedure PREDICTION()
2: Initialize weight vector wj

3: For each all Z data set (i = 1 to n)
4: For each j = 1 to n

5: Evaluate output Y PF
i =

n∑
j=1

Zjwj

6: Compare output Y PF
i with actual output Yi

7: Error Yi − Y PF
i

8: Use Gradient Descent to minimize the error
9: Adopt wj in current layer

10: Repeat until ě and ê has been minimized.
11: End For
12: End For
13: end procedure

vector < CPUhigh.RAMhigh.Diskhigh > is computed for all
of three super tasks. Then, These super tasks are mapped to
the most suitable hosts having sufficient resources, separately.

Fig. 3: Failure-prone scheduling with preparing super task
(fault-tolerant mechanism).

For example, Let T1, T2, T3 are three consecutive failure-
prone tasks (first three predicted failure tasks from failure-
prone task queue), and they have different vector such as,
T1= < CPU.RAM.Disk > = < 4.2.5 >,
T2= < CPU.RAM.Disk > = < 6.4.3 >,
T3= < CPU.RAM.Disk >= < 5.7.4 >.

First, requested resources (CPU, RAM, Disk) are compared
among these consecutive three tasks. From comparison, we
can see that T1 has highest disk: 5, T2 has highest CPU: 6,
and T3 has highest RAM:7. Then, highest resource vector
value < CPUhigh.RAMhigh.Diskhigh > is chosen for the
resource vector value of super tasks. Thus, final resource
vector value < 5.6.7 > is allocated to each of the super tasks,
i.e.,
SuperTask1 = 5.6.7 ,
SuperTask2 = 5.6.7,
SuperTask3 = 5.6.7

C. Vector Bin Packing

A resource allocation on different hosts can be considered
as a vector bin packing problem, where VMs are treated as
bins. Greedy algorithm is one of the most natural heuristics for
one dimensional bin packing, generally mentioned to as first
fit decreasing (FFD) [30]. All the items are sorted by its size in
decreasing order, and the three dimensions of the requirement
of CPU, RAM, and storage are used in sorting, and then placed

Algorithm 2 Task Scheduling Procedure

1: procedure PEFS()
2: Task Tk, historical data set, VMList- a set of VMs, and

HostList- a set of hosts
3: Predict task failure: PREDICTION()
4: If Tk prediction status fail
5: Keep Tk on failure-prone task queue
6: Choose first three task from failure-prone task queue i.e.,

T1, T2, T3 from { T1, T2, T3, · · ·, Tl }
7: Create SuperTask1, SuperTask2, SuperTask3 using

vector reconstruction method
8: VMList= Sort VM list by order(enough resources)
9: HostList= Sort host list by order(energy consumption)

10: a ←− size of HostList, b ←− size of VMList
11: For i = 1 to a
12: For j = 1 to b
13: If Vj resources can schedule SuperTask
14: m ←− order of sub tasks of SuperTask
15: For n = 1 to m
16: If Tn of SuperTask already not executed
17: Schedule Tn of SuperTask to Vj of Hosti
18: End If
19: End For
20: End If
21: End For
22: End For
23: Else
24: Keep Tk on non-failure-prone task queue
25: Create Vector for Task Tk

26: VMList= Sort VM list by order(enough resource)
27: HostList= Sort host list by order(energy consumption)
28: a ←− size of HostList, b ←− size of VMList
29: For i = 1 to a
30: For j = 1 to b
31: If Vj resources can schedule Tk

32: Schedule Tk to Hosti
33: End If
34: End For
35: End For
36: End If
37: end procedure

sequentially in the first bin that has enough capacity. There are
generally two natural options of generalizing FFD for scaling
and normalizing across multi-dimension case to decide how to
assign a weight to a vector i.e., FFD product weight (FFDProd)
and FFD sum weight (FFDSum).

In this paper, we present norm-based greedy heuristic based
on FFDSum that looks at the difference between the vector Gl

and residual capacity c(t) under a certain norm [31]. The item
vector Gl that minimizes the quantity

∑
i

wi(G
l − c(t)i)

2 and

the assignment does not violate the capacity constraints for the
l2 norm, from all unassigned items. FFDSum is more robust
if the dimensions can be assigned smaller coefficients wi and
have a lower impact on the ordering. Average demand heuristic

call FFDAvgSum, AvgDemi = 1
n

n∑
l=1

Gl
i in i dimension is

6
TABLE I: Types of VM

VM Type Cores MIPS RAM (MB) Disk Storage (GB)
VM1 1 1000 1536 5
VM2 1 1500 3840 5
VM3 1 2500 871 5

chosen wi.

V. EXPERIMENTS

Experiments are conducted to validate the proposed scheme.
In the experiments, the predicted task failure is compared
with actual task failure to validate the failure prediction. Also,
the performance of the proposed scheduling scheme PEFS
is compared with some existing techniques, real-time fault-
tolerant scheduling algorithm with rearrangement (RFTR)
[20], dynamic fault tolerant scheduling mechanism (DFTS)
[21] and modified breadth first search (MBFS) [22] as all of
them are designed for fault-tolerant scheduling.

A. Experimental Setting
The experiments are conducted to validate the energy-

aware fault-tolerant scheduling scheme based on intelligent
prediction model by deploying the core methods presented in
section III and section IV. The simulation are performed on
a machine equipped with CPU (Intel(R) Core(TM) i5-3230M,
2.60GHz), RAM (8.0 GB), disk storage (750GB), Windows 10
operating system, NetBeans IDE 8.2, JDK 8.0. TensorFlow is
used to implement deep neural network using the dataset. The
simulation is performed using CloudSim [32] to create a CDC
system that has identical hosts and heterogeneous VMs. Table
I presents the types of VM in simulations.

We consider submission time, waiting time, start time, run
time, end time, status of task (failed/ succeed), resources used
(CPU, RAM, disk storage), etc. Similarly, task failure informa-
tion have been gathered for intelligent failure prediction. Based
on utilization threshold of CPU, RAM, and disk storage, the
resource utilization parameters are measured. If the resource
utilization parameter has value more than threshold value then
status would be classified as a failed otherwise not failed. The
performance (accuracy of prediction model) is measured based
on various errors.

B. Parameter setting
All the hosts in CDC are identical and each host has CPU

cores (2800 MIPS per core), 8192 MB of RAM, 1 TB of
disk storage. The metrics used for comparison include the
failure ratio of tasks in scheduling, resource utilization and
total energy consumption.
Task failure ratio
This ratio represents the tasks failed because they could not
be scheduled.
FT =(Number of Failure Task)/(Total no of Task)
Resource utilization
The utilization is defined by the ratio between time taken to
process tasks and total time.
utilization=(Time Processing Tasks)/(Total Time)%
Energy Consumption
The total energy consumed by the CDC.

C. Quantitative Analysis

To demonstrate the relation between failure ratio of tasks
and resources, we quantify the impacts of different parameters
and their correlation. We perform correlation and covariance
analysis based on the data set. The correlation shows the
relation between failure task ratio and resource allocation. The
analysis result shows that, task failure occurrence if the sched-
uler allocates minimum resources, linear relation between
failure task ratio and resource allocation. Table II shows the
average allocated resources for failed and succeed tasks with
correlation and covariance analysis result of Internet data set
[29]. Similarly, Table III shows the analysis of Google cluster
data set [33], where average requested resources for failed and
succeed tasks are given with their correlation analysis. From
the analysis, we can see that the tasks are failed if the allocated
resources are low and requested resources are high. Fig. 4
represents the relation between tasks and computing resources.
Red and blue dot represents the failed and succeeded task,
respectively. The three dimensions represent the requested
and allocated resources (CPU, RAM and Disk Storage) for
given task set. Fig. 4(a) indicates the task representation of
Internet data set with resources, and Fig. 4(b) indicates the
task representation of Google cluster data set with resources.

(a) Internet data set (b) Google data set

Fig. 4: Relation of failure task with resources (CPU, RAM,
Disk storage).

VI. RESULTS AND DISCUSSION

A. Accuracy of prediction model

Based on our experimental setting, we summarize the results
using deep neural network based prediction model. Total
50,000 tasks are taken from Internet data set [29], where
40,000 tasks are used as testing and 10,000 tasks are used
for training. Total 1 input layer, 3 hidden layers and 1 output
layer are taken for deep neural network. Similarly, 10, 20 and
10 nodes are taken in first, second and third hidden layers,
respectively. Errors ě and ê based on equation (6) and equation
(7) are used to validate the prediction accuracy of failure
task, respectively. Fig. 5 compares the actual task failures and
predicted task failures to different task counts. The prediction
accuracy stays above 84% however the task count grows.

B. Energy consumption

The total energy consumption is compared among these
entire schemes as shown in Fig. 6. The proposed PEFS re-
duces energy consumption by approximately 28.66%, 21.74%

7
TABLE II: Internet data set analysis

Resources Average allocated resources for failed task Average allocated resources for succeeded task Correlation coefficient Covariance
CPU 0.419 0.585 0.286 0.041
RAM 0.416 0.580 0.287 0.041
Disk storage 0.419 0.577 0.275 0.040

TABLE III: Google cluster data set analysis

Resources Average requested resources for failed task Average requested resources for succeeded task Correlation coefficient Covariance
CPU 0.044 0.029 -0.135 -0.003
RAM 0.029 0.015 -0.180 -0.003
Disk storage 0.0003 0.0001 -0.1268 -0.00003

Fig. 5: Actual failure and predicted failure with task count.

and 26.10% relative to those of RFTR, DFTS and MBFS,
respectively. The PEFS generates a schedule that uses lower
energy consumption than the other approaches.

Fig. 7 exhibits that the total energy consumption of the
four algorithms grows linearly, when task count increases.
In every task count, the proposed scheme optimized energy
outstandingly.

Fig. 6: Total energy consumption.

Fig. 7: Total energy consumption with task count.

C. Task Failure ratio

Fig 8 shows the task failure ratio of four algorithms. It
can be seen that the failure ratio of the PEFS is lower than
the other three algorithms. The proposed PEFS reduces task
failure ratio by approximately 18.75%, 16.13% and 29.73%
relative to those of RFTR, DFTS and MBFS, respectively.

Fig. 8: Failure ratio.

D. Resource Utilization

We observe that the resource utilization of the four algo-
rithms ascend accordingly. Fig. 9 shows that PEFS has higher
resource utilization than RFTR, DFTS and MBFS. Fig. 10
shows the resource utilization of four algorithm in different
task counts. This occurred due to that PEFS employs super
task construction strategies to allocate failure predicted tasks
to most suitable physical hosts and virtual machines, where
other remaining schemes use replication mechanism for all
tasks.

Fig. 9: Average resource utilization.

VII. CONCLUSION

A prediction based energy-aware fault-tolerant scheduling
scheme PEFS for cloud data center is developed in this paper.

8

Fig. 10: Average resource utilization with task count.

First, tasks are classified into failure-prone tasks and non-
failure-prone tasks using prediction model based on deep
neural network and historical data set. Then, only failure-prone
tasks are replicated and arranged into super tasks in a way of
vector reconstruction method that the execution of different
copies of the tasks in different hosts will not be overlapped so
that redundant execution will be avoided. The vector bin pack-
ing method is used to schedule reconstructed super tasks and
non-failure-prone tasks to most suitable hosts. Experiments on
Internet Data Set are conducted, and the experimental results
validate the merits of the proposed scheme in comparison with
existing techniques.

ACKNOWLEDGMENT

The first author gratefully acknowledges CAS-TWAS Pres-
ident’s Fellowship for funding his Ph.D. at Chinese Academy
of Sciences, Beijing, China.

REFERENCES

[1] K. Bilal, S. U. Khan, L. Zhang, H. Li, K. Hayat, S. A. Madani,
N. Min-Allah, L. Wang, D. Chen, M. Iqbal, C.-Z. Xu, and A. Y.
Zomaya, “Quantitative comparisons of the state-of-the-art data center
architectures,” Concurrency Computation: Practice and Experience,
vol. 25, no. 12, 2012.

[2] D. Kliazovich, P. Bouvry, and S. U. Khan, “Dens: data center energy-
efficient network-aware scheduling,” Cluster Computing, vol. 16, no. 1,
p. 6575, 2013.

[3] J. Shuja, S. A. Madani, K. Bilal, K. Hayat, S. U. Khan, and S. Sarwar,
“Energy-efficient data centers,” Computing, vol. 94, no. 12, p. 973994,
2012.

[4] J. Liu, S. Wang, A. Zhou, S. Kumar, F. Yang, and R. Buyya, “Using
proactive fault-tolerance approach to enhance cloud service reliability,”
IEEE Transactions on Cloud Computing, no. 99, 2017.

[5] O. Hannache and M. Batouche, “Probabilistic model for evaluating a
proactive fault tolerance approach in the cloud,” IEEE International
Conference on Service Operations And Logistics, And Informatics, pp.
94–99, 2015.

[6] B. Mohammed, M. Kiran, M. Kabiru, and I.-U. Awan, “Failover strategy
for fault tolerance in cloud computing environment,” Software: Practice
and Experience, vol. 47, no. 9, p. 12431274, 2017.

[7] J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subramaniam, “Elastic
reliability optimization through peer-to-peer checkpointing in cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 2, pp. 491–502, 2017.

[8] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative study
into distributed load balancing algorithms for cloud computing,” IEEE
International Conference on Advanced Information Networking and
Applications Workshops, pp. 551–556, 2010.

[9] A. Marahatta, Y.-S. Wang, F. Zhang, A. K. Sangaiah, S. K. Sah Tyagi,
and Z. Liu, “Energy-aware fault-tolerant dynamic task scheduling
scheme for for virtualized cloud data center,” Mobile Networks and
Applications, 2018.

[10] A. Zhou, S. Wang, C.-H. Hsu, M. H. Kim, and K. S. Wong, “Network
failure-aware redundant virtual machine placement in a cloud data cen-
ter,” Concurrency and Computation: Practice and Experience, vol. 29,
no. 24, 2017.

[11] C. Wang, L. Xing, H. Wang, Z. Zhang, and Y. Dai, “Processing time
analysis of cloud services with retrying fault-tolerance technique,” IEEE
International Conference on Communications in China, pp. 63–67, 2012.

[12] G. Ramalingam and K. Vaswani, “Fault tolerance via idempotence,”
SIGPLAN Not., vol. 48, no. 1, pp. 249–262, 2013.

[13] K. Plankensteiner, R. Prodan, and T. Fahringer, “A new fault tolerance
heuristic for scientific workflows in highly distributed environments
based on resubmission impact,” IEEE International Conference on e-
Science, pp. 313–320, 2009.

[14] M. A. Mukwevho and T. Celik, “Toward a smart cloud: A review
of fault-tolerance methods in cloud systems,” IEEE Transactions on
Services Computing, 2018.

[15] J. Wu, P. Zhang, and C. Liu, “A novel multiagent reinforcement learning
approach for job scheduling in grid computing,” Future Generation
Computer Systems, vol. 27, no. 5, p. 430439, 2011.

[16] M. A. Shafii, L. M. Shafie Abd, and B. M. Bakri, “On-demand grid
provisioning using cloud infrastructures and related virtualization tools
: A survey and taxonomy,” International Journal of Advanced Studies in
Computer Science and Engineering IJASCSE, vol. 3, no. 1, pp. 49–59,
2014.

[17] V. S. Kushwah, S. K. Goyal, and P. Narwariya, “A survey on various
fault tolerant approaches for cloud environment during load balancing,”
IJCNWMC, vol. 4, no. 6, pp. 25–34, 2014.

[18] P. Kassian, P. Radu, F. Thomas, K. Attila, and P. Kacsuk, “Fault-tolerant
behavior in state-of-the-art gridworkflow management systems,” Institute
for Computer Science University of Innsbruck Attila Kert CoreGRID
Technical Report Number TR-0091, 2007.

[19] P. Kassian and P. Radu, “Meeting soft deadlines in scientific workflows
using resubmission impact,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 23, no. 5, pp. 890–901, 2012.

[20] P. Guo and Z. Xue, “Real-time fault-tolerant scheduling algorithm
with rearrangement in cloud systems,” 2017 IEEE 2nd Information
Technology, Networking , Electronic and Automation Control Conference
(ITNEC), pp. 399–402, 2017.

[21] J. Soniya, J. Angela, J. Sujana, and T. Revathi, “Dynamic fault-
tolerant scheduling mechanism for real time tasks in cloud computing,”
International Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), 2016.

[22] R. K. Yadav and V. Kushwaha, “An energy preserving and fault tolerant
task scheduler in cloud computing,” IEEE ICAETR, 2014.

[23] M. Amoon, “A fault-tolerant scheduling system for computational grids,”
Comput. Elect. Eng., vol. 38, no. 2, p. 399412, 2012.

[24] P. Keerthika and S. P, “A multiconstrained grid scheduling algorithm
with load balancing and fault tolerance,” Sci. World J., 2015.

[25] H. Duan, C. Chen, G. Min, and Y. Wu, “Energy-aware scheduling of
virtual machines in heterogeneous cloud computing systems,” Future
Generation Computer Systems, vol. 74, pp. 142–150, 2017.

[26] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient vm scheduling
for cloud data centers: Exact allocation and migration algorithms,” 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, 2013.

[27] B. Nazir, K. Qureshi, and P. Manuel, “Adaptive check pointing strategy
to tolerate faults in economy based grid,” Journal of Supercomputing,
vol. 50, no. 1, pp. 1–18, 2009.

[28] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” ISCA, pp. 13–23, 2007.

[29] “Internet data set.” [Online]. Available: https://github.com/somec001/
InternetData

[30] V. V. Vazirani, “Approximation algorithms,” Springer-Verlag, New York,
Inc., 2001.

[31] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector
bin packing,” Microsoft Research, Tech. Rep., 2011.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“Cloudsim:a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource,” Software: Practice and Ex-
perience, vol. 41, no. 1, pp. 23–50, 2011.

[33] “Google cluster data set.” [Online]. Available: https://github.com/
google/cluster-data/blob/master/ClusterData2011 2.md

