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Abstract. Large-field high-resolution electron tomography enables vi-
sualizing detailed mechanisms under global structure. As field enlarges,
the processing time increases and the distortions in reconstruction be-
come more critical. Adopting a nonlinear projection model instead of a
linear one can compensate for curvilinear trajectories, nonlinear electron
optics and sample warping. But the processing time for the reconstruc-
tion with nonlinear projection model is rather considerable. In this work,
we propose a new parallel strategy for block iterative reconstruction al-
gorithms. We also adopt a page-based data transfer in this strategy so as
to dramatically reduce the processing time for data transfer and commu-
nication. We have tested this parallel strategy and it can yield speedups
of approximate 40 times according to our experimental results.

Keywords: Electron tomography, Three-dimensional reconstruction, It-
erative methods, Nonlinear projection model, TxBR.

1 Introduction

In electron tomography (ET), the specimen is tilted within a limited range
[−60◦, 60◦] or [−70◦, 70◦] in small increment of 1− 2◦ or so. During the process of
taking projection images, electron beams impinge upon the specimen and pene-
trate it. ET can reconstruct a specimen’s three-dimension (3D) internal structure
from these projections. Now ET plays a crucial role in studying macromolecu-
lar assemblies. Especially, large-field high-resolution ET allows visualizing and
understanding global structure such as organelles, membranes and microfiber
networks extending throughout the cell and into intercellular spaces [1]. The de-
velopment of hardware and techniques has made large-field high-resolution ET
possible [2, 3].

M. Basu, Y. Pan, and J. Wang (Eds.): ISBRA 2014, LNBI 8492, pp. 102–113, 2014.
c© Springer International Publishing Switzerland 2014



A Parallel Scheme for Three-Dimensional Reconstruction in Large-Field ET 103

Now the size of projection image has reached to 8192*8192 or larger. Then the
size of final reconstruction volume will reach several GBytes [4]. In large-field ET,
there are still problems to acquire high-quality reconstruction results. Projection
images in ET are extremely noisy because of low signal-to-noise ratio (SNR).
Furthermore, projection images are not complete at limited angle, which can
lead to artifact during reconstruction. Different from traditional back-projection
reconstruction algorithms, iterative methods have good performance in handling
incomplete and noisy data. Many iterative methods, e.g. SIRT [5], BICAV [6] and
ASART [7] have been adopted in three-dimensional (3D) reconstruction of ET.
As image sizes increase, distortions in reconstructions become more pronounced
because electron trajectories are helical under the influence of magnetic fields.
To decrease these distortions, a global nonlinear projection model is proposed
and has been already used in TxBR [8] and iterative methods [2].

However, the curvilinear projection model increases the complexity of calcula-
tion and extends the processing time. Meanwhile, iterative methods for 3D recon-
struction in large-field ET are time-consuming compared with back-projection
algorithms. Here to cope with the computational problem, parallel processing
has been applied. Parallel strategies on clusters [2, 3, 8] have been widely used
in 3D reconstruction of ET with curvilinear projection model to reduce turn-
around times. These parallel strategies consider each projection map as a set
of nonlinear transforms on z-sections which sum to produce the image, and the
sections along Z-axis are reconstructed separately on different processors.

Graphic Processing Units (GPUs) have been widely used to accelerate sci-
entific applications. Unlike clusters, these desktop supercomputers can ob-
tain significant speed-ups on relatively inexpensive hardware with impressive
performance-per-watt. The parallelization on GPUs is difficult for large-field
data owing to the limited storage of memory in GPUs. For example, the global
memory of GTX 480 graphic card is 1.5GB. However, the raw projection data
and the final 3D reconstruction are approaching 50GB and 200GB respectively,
if each image size is 8K*8K. TxBR adopts a parallel scheme to calculate 3D re-
construction using curvilinear projection models and backprojection algorithms
on GPUs [3]. In this parallel scheme, all the volume is divided into several slabs
including several Z-sections along Z-axis and each slabs are reconstructed on
GPUs sequentially. But for iterative reconstruction methods, we usually need
many iterations to achieve good reconstructions. Using the previous parallel
schemes, we have to repeatly transfer all the sections into the memory of GPUs
for each iterative step, which is rather time-consuming.

In this work, we describe a variant block-iterative version of SIRT method and
implement its parallelization on GPUs. Our contribution includes two aspects.
First, we propose a new Block-iterative SIRT parallel algorithm (BSIRT) with
curvilinear projection model. We analyze the locality of curvilinear trajectory
and then divide the data vertically according to the locality. Secondly, we adopt
a page-based data transfer scheme in order to reduce the time for data transfer.

The paper is laid out as follows. Section 2 overviews iterative reconstruction
algorithms, curvilinear model and previous GPU parallel strategies. Section 3
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describes variant block-iterative version of SIRT methods (BSIRT) with curvilin-
ear model. Then the implementation details of page-based data transfer scheme
will be introduced in Section 4. Finally, we will show and evaluate our experi-
mental results in Section 5.

2 Related Work

As our work focus on the iterative methods and its parallelization on GPU
with curvilinear projection model. In this section, we first overview the iterative
algorithms and introduce the curvilinear projection model. Then, we will review
the previous parallel strategies.

2.1 Iterative Reconstruction Methods and Curvilinear Projection
Model

In ET, the reconstruction problem is to obtain the internal structure of specimen
by projection series. Working in real-space, the iterative methods solve the 3D
reconstruction problem by formulating it as a large system of linear equations.
Assuming the voxel as basis function to represent the volume, we present the
result by the value of N (N = nwidth ∗ nlength ∗ nheight) voxels. We suppose that
the total number of projection pixels is M (M = npro width ∗ npro length ∗ nang),
the projection procedure can be simply represented as follows:

pi =

N∑

j=1

Aijsj 1 ≤ i ≤ M (2.1)

where pi is the value of ith projection pixel, sj is the value of jth voxel and Aij

in matrix A indicates the contribution of the voxel j to the projection i. We can
calculate matrix A according to projection model. We use (x, y, g) to indicate
the projection point, where g is the index of orientation and i = g ∗ npro width ∗
npro length + y ∗ npro width + x. We can use iterative algorithms to calculate the
value of voxels S = {s1, s2 . . . sN}.

Iterative methods can be generally classified into sequential, block-iterative
and simultaneous methods [9]. In essence, the sequential and simultaneous al-
gorithms are special cases of block iterative reconstruction [10]. Suppose all the
equations of linear system may be subdivided into B blocks each of size T , we
use a generalized version of iterative methods to describe the iterative step:

sk+1
j = skj + λk

∑

i∈BLOCKb

Aij∑N
v=1 w

b
vA

2
iv

(pi −
N∑

w=1

Aiws
k
w) 1 ≤ j ≤ N (2.2)

where b = k mod B is the index of block, i is the index of equation of system
and wb

v is the weighting factor [11]. The relaxation parameter λk is critical for
convergence speed, usually it is found by training or experimenting [6, 12].
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For the sequential iterative algorithms (B = M,T = 1), the equations are
considered one-by-one in a circular manner. If the block number B = 1, the
algorithm turns into simultaneous iterative algorithm. Simultaneous Iterative
Reconstruction Technique (SIRT) [5] is typical simultaneous iterative algorithm.
Block iterative algorithms update estimations by a subfamily of constraints in
each iterative step. The main iteration can proceed sequentially from block to
block and within each block in parallel. Traditional block iterative methods adopt
a view-by-view strategy, the size of each block is T = npro width ∗ npro length and
the block number is B = nang.

The projection step is formulated as Eq. (2.1). As mentioned, the value of
matric A is decided by projection model, which describes the correspondence
between projection points and voxels in object. Traditional straight-line pro-
jection model formulates projection map as a linear function. Here we adopt a
quadratic curvilinear projection map. This model has been used in [2,8]. All the
coefficients aθi and bθi are calculated by means of bundle adjustment, the details
of the procedure is in [8]. The general quadratic expression is:

x = aθ0 + aθ1X + aθ2Y + aθ3Z + aθ4X
2 + aθ5XY + aθ6XZ + aθ7Y

2 + aθ8Y Z + aθ9Z
2

y = bθ0 + bθ1X + bθ2Y + bθ3Z + bθ4X
2 + bθ5XY + bθ6XZ + bθ7Y

2 + bθ8Y Z + bθ9Z
2

(2.3)

2.2 Previous Parallel Strategy on GPU

As for linear projection model, it assumes electron beams travel in straight line,
so their trajectories are certainly parallel with each other and the slice perpendic-
ular to tilting axis (in this paper we suppose the tilting axis isX) always projects
in a straight line at each angle as shown in Fig. 1(a). Then 3D reconstruction
problem can be decomposed into a set of independent 2D reconstruction prob-
lems [4, 13–15]. Using the reconstruction methods mentioned above, 2D slice
reconstruction can be computed from a set of 1D projections (so-called sino-
gram [4]). But this strategy is not adaptable for curvilinear projection models
because the curvilinear trajectories are not in parallel.

We need to divide data and reconstruct each part sequentially because of
limited global memory on GPU and large data. TxBR [8] has proposed a GPU
parallel strategy for direct reconstruction with curvilinear projection model. By
regarding each projection map as a set of nonlinear transform on z-sections
which sum to produce the image, it divide the object along the z-axis (see Fig.
1(b)) and reconstruct each z-section separately. Iterative algorithm ASART has
implemented the parallelization on clusters [2], using similar strategy. When we
use iterative algorithm, we need all the volume in one iterative step. Because of
the limited storage of memory in GPUs, we need to transfer all the sections into
the memory of GPUs for each iterative step, which is very time-consuming.
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(a) Parallel strategy for straight-
line projection model
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(b) Parallel strategy for curvilin-
ear projection model

Fig. 1. Parallel strategy for 3D reconstruction in electron tomography

3 Block-Iterative SIRT Algorithm with Curvilinear
Model

Since previous algorithms are not suitable for iterative reconstruction with curvi-
linear model on GPUs, we need to find a new parallel algorithm. As GPU’s global
memory is limited for large-field reconstruction, we can consider a scheme for
data partition. We analyze the locality of curvilinear trajectory to divide data.
Then by modifying traditional SIRT algorithm and using a new data-divided
scheme, we can effectively reduce the time for data transfer.

3.1 Locality of Curvilinear Trajectory

As discussed above, the projection of a slice is a straight line at each view if we
adopt a straight-line model. However, with a curvilinear projection model, we
can get different curves as the projections of a slice at each view. Conversely, for
a straight line as a projection, its corresponding voxels are formed into a curved
surface (see Fig. 2), which varies with the orientation. The curved surface covers
a few slices. To a certain extent, it still owns locality. We can consider to analyze
the locality of the curved surface and then calculate the precise scope of X
coordinates of the curved surface.

Suppose that x is constant (i.e. x = c , c is constant) in Eq. (2.3), we can get
the expression of the curved surface mentioned above:

c = aθ0+aθ1X+aθ2Y +aθ3Z+aθ4X
2+aθ5XY +aθ6XZ+aθ7Y

2+aθ8Y Z+aθ9Z
2 (3.1)

For these voxels on this curved surface, the x coordinate of their projection
points is c. Here we can get the range of X by calculating the global maximum
and minimum of curved surface within a certain domain (D = {(X,Y, Z)|X ∈
[xmin, xmax], Y ∈ [ymin, ymax], Z ∈ [zmin, zmax]}). xmin, xmax . . . zmax are con-
stant.
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x

Fig. 2. Curvilinear projection model

Eq. (3.1) is an implicit function. X is dependent variable, Y and Z are inde-
pendent variables. The global maximum and minimum should be a local maxi-
mum and minimum in the interior of the domain or a point on the boundary of
the domain. So we can calculate these values and then choose the minimum and
maximum among these values as the scope of X .

Theorem 1. For a continuously differentiable function of several real variables,
a point P is critical if all of the partial derivatives of the function are 0 at P .

According the Theorem 1, we can use the implicit differentiation to get the
partial derivatives and get the critical points in the interior of the domain.
⎧
⎨

⎩

c = aθ0 + aθ1X + aθ2Y + aθ3Z + aθ4X
2 + aθ5XY + aθ6XZ + aθ7Y

2 + aθ8Y Z + aθ9Z
2

∂X
∂Z = 0
∂X
∂Y = 0

(3.2)
Firstly, we calculate the critical points of intersecting lines. The curved surface

may intersect with plane Z = zmin, Z = zmax,X = xmin, X = xmax, Y = ymin

and Y = ymax. Secondly, we consider the terminal point of the intersecting
using the similar method. For example, the critical point of intersecting line
(with plane Z = zmax) is calculated like:
⎧
⎨

⎩

c = aθ0 + aθ1X + aθ2Y + aθ3Z + aθ4X
2 + aθ5XY + aθ6XZ + aθ7Y

2 + aθ8Y Z + aθ9Z
2

Z = zmax
∂X
∂Y = 0

(3.3)
According to this procedure, we can get the scope of X . Suppose the result

is {MAXθ
c ,MINθ

c}. Absolutely, this result is different for different views. Next
we extend the range of projection points to {(x, y, θ)|x ∈ [cθ1, c

θ
2]}, cθ1 and cθ2 is

constant, we can get the corresponding X coordinates of voxels by:

Xmin = min{MINθ
i , c

θ
1 ≤ i ≤ cθ2}

Xmax = max{MAXθ
i , c

θ
1 ≤ i ≤ cθ2}

(3.4)

Finally, if we consider a scope of orientations instead of one orientation, we
can also get the scope of X for different views.
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3.2 Block-Iterative SIRT (BSIRT) Algorithm

Different from SIRT, block iterative methods update estimations by a subfamily
of constraints in each step. The iteration proceeds from block to block and
usually the members of a block are selected sequentially (like SART, iterate
view by view). In a straight-line projection model, the 3D object can be divided
into several slices and each slice can be reconstructed separately. In a curvilinear
projection model, we can divide the object into slabs according to the locality
of curvilinear trajectory.

First of all, we equally divide the projection series along the tilting axis into
B parts. Each part can be formulated as mathematical set St.

St = {(x, y, g)|x ∈ (ct, ct+1], y ∈ [1, npro length], g ∈ [1, nang]}
ct =

npro width

B ∗ t t = 0, 1, 2 . . .B − 1
(3.5)

We can calculate the scope of X in each corresponding 3D sub-volume Dt for
each St according to the scheme described in Section 3.1. So we can divide 3D
volume into B parts. The equations for St is:

pi =
∑

j∈Dt

Aijxj i ∈ St (3.6)

In each iterative step, we only need the data in sub-volume Dt instead of all
the volume. As shown in Fig. 3, in the first step, we reconstruct the first sub-
volume D1 from the first part S1 of projection images. This strategy only need
to transfer data one time for one update step. The size of each sub-volume is
decided by the range of projection points and the number of orientations.

D1

s1(1)

s1(2)

s1(n )ang

s1(3)

s1(4)

s1(5)
s1(6)

s1(7)

....

Fig. 3. Block-iterative SIRT algorithm

4 Page-Based Data Transfer Scheme

We also notice another problem: there is overlap between adjacent sub-volumes.
If each sub-volume Dt is reconstructed and then transferred in each update step,
the overlapping data will be transferred repeatedly. We propose a page-based
data transfer scheme to eliminate the redundant data transfer. In this scheme,
the overlapping data will not be transferred from the memory in the iterative
steps until it is not reconstructed. Every time, we transfer useless data out of
GPU and new data in GPU.
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In case that the size of incoming data is bigger than the outgoing, we divide the
global memory into several pages. Since the size of sub-volume Dt is different,
we should calculate the size of outgoing and incoming data according to the
distribution of sub-volumes. According to this, we can define the biggest number
as page size.

An example is listed in Table 1. The coordinate scope of reconstruction object
is {(X,Y, Z)|X ∈ [−87, 563], Y ∈ [−31, 652], Z ∈ [−62, 38]}. The tilting axis is
X and the size of projection is 512 ∗ 512. We divide the projection series into 8
groups (B = 8). As we partition the object vertically according to the value of
X , Table 1 shows that the size ofX for each slab. For the first slab, after the first
iterative step, we need to move out the part whose scope of X is from -78 to -12.
The size of the transferred data is (−12− (−78)+ 1) ∗ 651 ∗ 101 = 67 ∗ 651 ∗ 101.
We use 67 to indicate the size of data moved out in column “out” of Table 1. We
calculated the sizes of data moved out and in for each slab and found that these
values are almost the same. So we can choose the maximum (69 ∗ 651 ∗ 101) as
the size of page.

Table 1. The distribution of slabs

start position of X end position of X overlap range of X out in total size

1st slab -78 193 205 67 0 272

2nd slab -11 261 206 67 68 273

3rd slab 56 329 205 69 68 274

4th slab 125 398 206 68 69 274

5th slab 193 467 207 68 69 275

6th slab 261 536 208 68 69 276

7th slab 329 563 168 67 27 235

8th slab 396 563 0 0 0 168

Next, we repartition the voxels according to the start point of each slab (shown
in Table 2, the page 1 to 7). After the start points are considered, the rest of
data is partitioned according to the page size (page 8,9,10).

Table 2. The distribution of pages

start position of X end position of X range of X

1st page -78 -12 67

2nd page -11 55 67

3rd page 56 124 69

4th page 125 192 68

5th page 193 260 68

6th page 261 328 68

7th page 329 395 67

8th page 396 464 69

9th page 465 533 69

10th page 534 563 30
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The whole procedure is described as follows. In the first iterative step, the first
slab including several pages (from page 1 to 5) is moved in the memory of GPU.
In the following iterative step, we need to move out the previous unnecessary
page of data and move in the next page of data. Basically, the size of data in
the memory of GPU is a little larger than that of a slab, which could ensure all
the data required can be stored in GPU. When the end of data is in GPU, we
can stop transfer data out until this round finish.

5 Result

In this section, we outline the experimental results. As we proposed a variant
version of SIRT (called BSIRT) and studied its parallel scheme. First of all, we
compare the performance of BSIRT and SIRT, show their reconstruction result.
Next, we report the timing performance of SIRT and BSIRT.

The benchmark used in this section has been adopted by paper [2] and its
partition has been discussed in Section 4. The thickness of sample is 350nm, the
micrographs were taken in a 300kV FEI Titan TEM with a 37k magnification.
The tilt series are composed of 121 micrographs, taken from −60◦ to +60◦.
The size of each micrograph is 512 ∗ 512 and the size of reconstruction result is
651 ∗ 684 ∗ 101.

All the experiments are carried out on machine running the Ubuntu 12.04
operating system 64-bit and the GPU card we use is NVIDIA GTX480, which
owns 480 SPs and 1536M global memory.

5.1 Reconstruction Result

All the experiments are performed using quadratic projection model. Here we
have considered three conditions: the first one updates the data using traditional
SIRT, the second one updates the data using BSIRT parallel algorithm with 4
slabs, the third one uses BSIRT with 8 slabs. Note that BSIRT with one slab
is identical to SIRT, which has been testified by experiment. In our experiment,
a combination of two factors, relaxation parameter and number of iterations,
need to be considered. We define the term “one iteration” as one whole sweep
through all equations of the system. The relaxation parameter λ keeps constant
throughout the iterations. Since the convergence of SIRT is guaranteed [16] as
long as 0 < λ < 2. Here we set the relaxation parameter λ = 0.1.

In our study, we applied projection error to compare the quality of the recon-
structed images, which is based on the discrepancy between the experimental
images and the images calculated by reprojection. Specifically, we use the mean
absolute error (MAE) to calculate the projection error:

MAE =
1

M

M∑

i=1

|pi − p′i| (5.1)

where pi is experimental projection images and p′i is the calculated projection
images. The line plots given in Fig.4 show these measures versus the number
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Fig. 4. Projection error

of iterations when the relaxation parameter λ = 0.1. We can see the projection
error of BSIRT (8 slabs) is smaller than that of BSIRT (4 slabs) in the same
iterations and the projection error of BSIRT with 4 (and 8) slabs is smaller than
SIRT, especially in the first 10 iterations. It proves that BSIRT enjoys a faster
convergence speed.

Fig. 5 shows the images produced after 5 iterations by SIRT and BSIRT (8
slabs). The result of BSIRT is similar to SIRT. As our algorithm is intrinsically
a block-iterative algorithm, with a proper relaxation ratio, our strategy will
acquire good result.

(a) SIRT + quadratic map (b) BSIRT + quadratic map

Fig. 5. Reconstruction result comparison

5.2 Performance of Parallelization

We have timed the BSIRT code on GTX 480 using CUDA 5.0. BSIRT is test
by dividing the object into 1 (SIRT), 4 and 8 slabs. We use two-dimensional
blocks to accomplish parallelization. The blocks in the same row are in charge
of one page. The running time is shown in Table 3. We can see it is basically
in proportion to iteration number. The running time of BSIRT with 4 slabs is
generally less than BSIRT with 8 slabs and its growth rate is smaller. The reason
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Table 3. Running time (sec)

Iteration number 1 slab (SIRT) 4 slabs 8 slabs CPU-only

1 24.022 31.641 57.572 1313.78

10 236.291 312.907 569.932 13224.44

20 472.321 625.321 1139.072 26396.36

30 711.686 937.785 1708.491 39653.17

40 947.617 1250.752 2277.419 52843.66

50 1183.486 1563.276 2846.961 66020.13

is less slabs means greater degree of parallelism and less communication cost. So
if the hardware condition permits, the less slabs the better.

Here we calculate the speedup ratio by comparing with the CPU-only pro-
gram, which is shown in Fig. 6. From this figure, we can see the speedup ratio
is about 23 and 41 for BSIRT (8 slabs) and BSIRT (4 slabs).
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Fig. 6. Speedup Ratio

6 Conclusion

In this work, we develop a variant version of SIRT (called BSIRT) and complete
its parallel scheme on GPUs. With this method, 3D reconstruction for large-
field electron tomography can be calculated on GPUs even though the memory
of GPUs is limited. Meanwhile, we proposed a page-based data transfer scheme,
which can reduce the data transfer time in implementation stage. Now our al-
gorithm is based on SIRT, but this parallel strategy can be applied to all kinds
of block-iterative algorithms. For the future work, we are considering that this
parallel scheme can be extended to other parallel platforms and the influence of
relaxation parameter is still to be pending to be discussed as well.
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