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Abstract—Accurate alignment of electron tomographic im-
ages without using embedded gold particles as fiducial markers
is still a challenge. Here we propose a new markerless align-
ment method that employs Scale Invariant Feature Transform
features (SIFT) as virtual markers. It differs from other types
of feature in a way the sufficient and distinctive information
it represents. This characteristic makes the following feature
matching and tracking steps automatic and more reliable,
which allows for estimating alignment parameters accurately.
Furthermore, we use Sparse Bundle Adjustment (SPA) with M-
estimation to estimate alignment parameters for each image.
Experiments show that our method can achieve a reprojection
residual less than 0.4 pixel and can approach the same accuracy
of marker alignment. Besides, our method can apply to
adjusting typical misalignments such as magnitude divergences
or in-plane rotation and can detect bad images.

I. INTRODUCTION

Electron tomography (ET) has attracted more and more
concerns as it provides the prospect of exhibiting cell
structure in molecular detail, e.g. molecular organization of
cytoplasm [1], networks of actin filaments in lamelipodia
[2]. The first step of ET is to collect projection data. Here
we focus on single axis data collection method, that is
to tilt around a certain axis in different angles, to project
the sample in electron microscopy and finally to record
the projection images for computer processing. When being
projected, the position of the sample is instable which raises
misalignments between projection images that may cause
low-quality reconstruction of the sample. Thus the goal of
alignment is to retrieve the specific position changes from
images and align them by inverse transformations.

Large translational and in-plane rotation changes can be
calculated by coarse alignment, using techniques such as
cross-correlation [3], common lines [4], or polar cross-
correlation [5]. These methods rely on finding the peak
location in the Fourier space. The values of the neighborhood
of the peak differ little with that of the peak which indicates
the images are influenced by high noise and the translational
or in-plane rotation estimation is not reliable enough.

Fiducial marker alignment has remained by far the most
accurate way to obtain alignment parameters, but unfortu-
nately not every sample can be embedded with particles

easily, and the particles may be poorly distributed so that
hide the information of sample structure [6].

Markerless alignment can be roughly classified into two
categories: grey-based alignment and feature-based align-
ment.

Grey-based alignment attempts to correlate the grey levels
of image patches, assuming that they present some similarity.
It uses in-process reconstruction-reprojection images com-
pared to original images to correct the position parameters
iteratively. This method is well applied to relatively textured
images [7]. However it is very computational and better to
be speeded up using parallel hardware like clusters or GPUs.

Feature-based alignment is less computational for it uses
some points not all points for parameter estimation. Since
the principle of feature-based alignment is similar to that
of fiducial marker alignment, the differences are: (i) real
marker features are substituted by virtual feature points
found by artificial intelligence, thus unlike marker features
extraction, it is inevitable to generate location errors; (ii)
one feature track may only cover a short range of tilt
series, and large number of tracks are generated that make
the underlying normal equations very large and sparse.
Substantial effort has been paid on how to extract and
match features reliably. Usually, feature can be determined
by informative locations [8] [9] [10] [11], and tracked
in corresponding area of adjacent images by normalized
cross-correlation iteratively. However, cross-correlation is
robust when enduring translational changes and is highly
sensitive to changes such as viewpoint change or non-rigid
deformations [12] which is just the changes between ET
images. This leads to two main errors that highly influence
position parameter determination: feature location errors and
false matches.

In this paper we propose a new strategy of feature-based
alignment using Scale Invariant Feature Transform (SIFT)
feature detection [12]. This modern feature detection tech-
nique differs from previous methods in that it is represented
by a 128-dimensional vector and in the way it matches
each other by nearest neighbor algorithm which determines
feature matches by searching smallest distance in feature
database. SIFT has proven to be invariant to image rotation

2010 IEEE International Conference on Bioinformatics and Biomedicine

978-1-4244-8305-1/10/$26.00 ©2010 IEEE 393



(a) (b)

Figure 1. Matches of an image pair after bad match elimination. In order
to avoid clutter, we only show the first 50 matches between two views. (a)
feature matches (b) feature matches in the same coordinate.

and scale and robust toward affine distortion and noise [12].
Furthermore its calculation is efficient so that it has the
potential for real-time applications. After using SIFT to
extract features of each image and matching and tracking
them accordingly, we build up 3D models for each feature
track. To solve the large projection model with condition
of feature measurement errors, we employ sparse bundle
adjustment [13] with M-estimators as robust estimation of
position parameters.

II. METHOD

A. feature extraction

It should be realized that one feature consists of two parts:
the distinctive locations, i.e. detector and the surrounding
information it represents, i.e. descriptor. Previous research
with features extraction has only brought the grey value
in the neighborhood of features for cross-correlation, not
exploited the abundant information that the neighborhood
renders. Our method adopt SIFT descriptor which computes
a histogram of local oriented gradients around the feature
point and stores the data in a 128-dimensional vector (8
orientation bins for each of the 4 × 4 location bins). This
kind of descriptor is very distinctive as it captures a sub-
stantial amount of information about the spatial intensity
patterns, and being robust to noise or geometric deforma-
tions [12].SIFT is widely used in computer vision field such
as object recognition and video tracking. Recently it has
been applied to analyzing 3D magnetic resonance images of
the human brain to detect Alzheimer’s disease [14], whose
results show a high ratio recognition of the disease in this
kind of low signal-to-noise ratio images comparable to ET
images.

One 512 × 512 pixel image can give rise to about 2000
SIFT features distributed around areas rich in detail. The
number of features is sufficient for generating large amount
of feature tracks covering the whole series. The location
coordinate and the 128-dimensional vector of each feature
are then stored in a database.

B. feature matching

Finding feature correspondences between two views can
be done by finding minimum Euclidean distance between

feature vectors in database. Only those correspondences
whose minimum distances are less than a certain threshold
can remain. This operation is executed between every image
pair. We only record image pairs which have more than 16
correspondences.

To exclude false matches between image pairs, we use
epipolar constraint. Those matches which generate large
residuals multiplied with the constraint are pruned and those
generate small residuals are corrected.

C. feature tracking

Feature tracks are formed by threading the feature matches
from the last step. The key skill is the computer searching
skill. We check the set of image pairs one by one. For each
feature in one image, find its correspondence in neighbor-
hood images iteratively. One feature which has at least one
correspondence forms a feature track and one feature track
is assumed to represent a projection sequence of a certain
virtual point in 3D space.

D. parameter estimation

The relation between the virtual 3D point and its pro-
jection in 2D image can be formalized as (1) [3],which is
widely used in markerless alignment:

Aj = sjRz(αj)PRy(θj)Rx(ϕ) (1)

Where sj is the scaling factor, Rz(αj) is the in-plane
rotation, P is orthographic projection matrix, Ry(θj) and
Rx(ϕj) are the rotations around y-axis and x-axis re-
spectively. The rotation parameters can be described using
quaternion form [15] to allow for big parameter changes
although it is unnecessary in this case as true values are
near the initial values.

In this kind of parameter estimation problem which is
also called Structure and Motion(SAM) problem in stereo
vision, we treat structure and motion parameters uniformly
and estimate them using well known least-squares method:

{sj , αj , θj , ϕ, ri} = argmin
sj ,αj ,θj ,ϕ,ri

∑
i,j

|mij − m̂ij |2 (2)

Classical methods for optimizing the parameters include
conjugate gradients, linear regression, Newton-like methods
and adaptive methods such as trust region method. Those
methods are prune to outliers. Thus we employ sparse bundle
adjustment [13] that jointly optimize 3D feature coordinates
and projection parameters and take advantage of the sparsity
of the gradient to reduce computation and memory storage.
At each round, we get a set of parameters and residual |mij−
m̂ij |. Then we perform M-estimators to exclude mij which
has large residual.

M-estimation is formalized by replacing the minimization
objective with objective function:
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Table I
TECHNICAL DETAILS

centriole mitochondrion caveola

Voltage(kV) 300 200 200

Full image size 512 × 512 1024 × 1024 512 × 512

No. Views 61 112 119

Pixel Width(nm) 2.02 0.8 1.6

No. Features(/image) 1312 20963 3030

No. Chains 9270 18869 4155

Aver. Chain Len. 3 2 2

Max. Chain Len. 57 29 22

No. Rounds 3 4 3

No. Outlier Chains 769 5198 287

No. Views Excluded 0 0 3

Reprojection Res. 0.242 0.381 0.311

E =
∑

j

ρ(rj(mj , P ); σ) (3)

Here, rj is residual, P represents the model, σ is the error
threshold we choose. Rounds continue until no mij can be
excluded.

III. EXPERIMENTS AND RESULTS

We present three real series of data for analysis. The
first series is downloaded from IMOD homepage [16],
which is experimental data for fiducial marker alignment.
We use it as a reference to our markerless alignment. The
other two are recorded by National Key Laboratory of
Biomacromolecules. Coarse alignment is carried out first in
default, which includes large-shifts correction using cross-
correlation and y-axis correction using Random transform
of power spectrum. Thus all the comparisons below are
between result of coarse alignment and that of our method.
We use the popular weighted back projection(WBP) [17] for
reconstruction.

The first experiment is centriole sample digitized by Gatan
Camera on TF30 with voltage 300kV. Markerless alignment
details are in Table 1. The table includes basic information
of the three data sets, and feature tracking and parameter
estimation information accordingly. The mean reprojection
residual of the first series is 0.242 pixel compared to 0.321
pixel in marker alignment as we set up a threshold in M-
estimator that gross errors will be eliminated in each round.
The small residual means that the estimated parameters are
very close to the measured parameters, just a reminder,
not the true ones. By eye-checking Fig.2, when only apply
coarse alignment, we can see dispersion of fiducial markers
which is caused by shift misalignment, whereas after marker
alignment or our method, dispersion does not exist. Besides,
the same cross sections of reconstruction show that tubulin
dimers of microtubules are clearly rendered after applying
marker method or our method other than coarse alignment.

(a)

(b)

(c)

Figure 2. From left to right are the reconstruction section after coarse
alignment, marker alignment and our robust markerless alignment. (a) is
top cross section, from which we can see the wing of gold particles in
coarse alignment caused by shift misalignment. Also longitudinal section
(c) illustrates the same effect. (b) is an area of center cross section harboring
useful information. Tubulin dimers of microtubules can be seen clearly after
applying marker alignment and our method.

(a)

(b)

(c)

Figure 3. Comparison between coarse alignment (left) and our method
(right) of mitochondrion. (a) is the longitudinal section of coarse aligned
images and aligned images using our method respectively. Inconsistent
sections means scale variations which are corrected by our method shown
on the right. (b) and (c) represent cross and longitudinal sections of
reconstruction result.

However our method is fully automatic while marker align-
ment needs to select marker seeds by hand first.

The second and third data sets are both colleted by
FEI company’s production– Tecnai 20 [18]. The second
test sample is mitochondrion of mice hepatic cell. With
a glance of original data, we can see variations in scale
about ±2% and in in-plane rotation changes which are
about ±2.50. The scale variations are rendered in figure 3a
with discontinuation of sections. After applying our method,
the discontinuation is smoothed meaning that the scale and
rotation changes have been adjusted well. The reconstruction
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(a)

(b)

Figure 4. Comparison between coarse alignment(left) and our
method(right) of caveola. (a) is cross section and (b) is longitudinal section.
From our method we can see legible phospholipid bilayer.

result shows that the ridge of mitochondrion is more clear
than only using coarse alignment.

The third test sample focuses on caveola of porcine aorta
endothelial cell(PAE cell) [19]. This series has a large noise
level. After three rounds of computation, three views that
have been blurred too much to have information more than
noise have been detected by our method and are to be
excluded before reconstruction. Reconstruction result shows
that after using our method, the structure–phospholipid bi-
layer is legibly unveiled.

IV. CONCLUSION AND FUTURE WORK

Alignment quality is crucial for reconstruction resolution
of ET images. How to retrieve the alignment parameters
from images without using fiducial markers is still a chal-
lenge. In this paper we propose a new accurate marker-
less alignment method which introduces SIFT features as a
substitution of fiducial markers. It has good attributes such
as invariant to image scale and rotation, affine distortion, and
noise [12]. The matching strategy of our method contrasts
with other correlation-based strategies in that it finds the
smallest distance of a selected feature from a database of
other features, and more importantly SIFT is distinctive
enough to enable the correct match. After matching and
tracking features throughout the whole series, we use SPA
with M-estimation to obtain position parameters. Compared
to other accurate alignment methods like [8], the reprojection
residual of our method is much smaller which means our
parameter estimation is more accurate with respect to the
same kind of measured location values.

As shown from the experiments, our method is well
applied to varied misalignment including random shifts,
scale, or in-plane variations and can detect bad images in
a series; our method is obviously more accurate compared
to coarse alignment and can achieve the accuracy of marker
alignment.

As modern electron microscopy like Gatan with automatic
data collection equipment can generate ET data in the
magnitude of terabyte in one day, fast or even real-time
alignment is unavoidable. Thus our future work will rest

on reducing the complexity of our method in each step in
order to meet real-time requirements.
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