
Energy-Efficient Scheduling

with Time and Processors Eligibility Restrictions

Xibo Jin1,2, Fa Zhang1, Ying Song1, Liya Fan3, and Zhiyong Liu1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

3 IBM China Research Laboratory, Beijing, China
{jinxibo,zhangfa,songying,zyliu}@ict.ac.cn, fanliya@cn.ibm.com

Abstract. While previous work on energy-efficient algorithms focused
on assumption that tasks can be assigned to any processor, we initially
study the problem of task scheduling on restricted parallel processors.
The objective is to minimize the overall energy consumption while speed
scaling (SS) method is used to reduce energy consumption under the
execution time constraint (Makespan Cmax). In this work, we discuss
the speed setting in the continuous model that processors can run at
arbitrary speed in [smin, smax]. The energy-efficient scheduling problem,
involving task assignment and speed scaling, is inherently complicated
as it is proved to be NP-Complete. We formulate the problem as an
Integer Programming (IP) problem. Specifically, we devise a polynomial
time optimal scheduling algorithm for the case tasks have an uniform
size. Our algorithm runs in O(mn3logn) time, where m is the number of
processors and n is the number of tasks. We then present a polynomial
time algorithm that achieves an approximation factor of 2α−1(2 − 1

mα)
(α is the power parameter) when the tasks have arbitrary size work.

1 Introduction

Energy consumption has become an important issue in the parallel processor
computational systems. Dynamic Speed Scaling (SS) is a popular approach for
energy-efficient scheduling to reduce energy consumption by dynamically chang-
ing the speeds of the processors according to the work they need to perform. The
well-known relationship between speed and power is the cube-root rule, more pre-
cisely, that is the power of a processor is proportional to s3 when it runs at speed
s [1, 2]. Most research literatures [3, 4, 5, 6, 7, 8, 9, 10] have assumed a more
general power function sα, where α > 1 is a constant power parameter. Note
that it is a convex function of the processor’s speed. Obviously, energy consump-
tion is the power integrated over duration time. Higher speeds allow for faster
execution, at the same time, result in higher energy consumption. In the past
few years, energy-efficient scheduling has received much attention from single
processor to parallel processors environment. In algorithmic, the approaches can
(in general) be categorized into the following two classes for reducing the energy
usage [5, 7]: (1) Dynamic speed scaling and (2) Power-down management. Our
paper focuses on energy-efficient scheduling via dynamic speed scaling strategy.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 66–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 67

In this policy, the goals of scheduling are either to minimize the total energy con-
sumption or to trade off the conflicting objectives of energy and performance.
The main difference is the former reduces the total energy consumption as long
as the timing constraint is not violated, while the later seeks the best point
between the energy cost and performance metric (such as makespan and flow
time).

Speed scaling has been widely studied to save energy consumption initiated
by Yao et al. [3]. The previous work consider that a task can be assigned to
any processor. But it is natural to consider the restricted scheduling in modern
computational systems. The reason is that the systems evolve over time, such as
cluster, then the processors of the system differ from each other in their function-
ality (For instance, the processors have different additional components). This
leads to the task can only be assigned to the processors, which has the task’s
required component. I.e., it leads to different affinities between tasks and pro-
cessors. In practice, certain tasks may have to be allocated for certain physical
resources (such as GPU) [11]. It is also pointed out that some processors whose
design is specialized for particular types of tasks, then tasks should be assigned
to a processor best suited for them [12]. Furthermore, when considering tasks and
input data, tasks need to be assigned on the processors containing their input
data. In other words, a part of tasks can be assigned on processors set Ai, and
a part of tasks can be assigned on processors set Aj , but Ai �=Aj , Ai∩Aj �=∅. An-
other case in point is the scheduling with processing processor restrictions aimed
at minimizing the makespan has been studied extensively in algorithmic (See [13]
for an excellent survey). Therefore, it is significant to study the scheduling with
processor restrictions from both of practical and algorithmic requirements.

Previous Work: Yao et al. [3] were the first to explore the problem of scheduling
a set of tasks with the smallest amount of energy on single processor environment
via speed scaling. They proposed an optimal offline greedy algorithm and two
bounded online algorithms named Optimal Available and Average Rate. Ishihara
et al. [4] formulated the minimization-energy of dynamical voltage scheduling
(DVS) as an integer linear programming problem when all tasks were ready
at the beginning and shared common finishing time. They showed that in the
optimal solution a processor only runs at two adjacent discrete speeds when it
can use only a small number of discrete processor speeds.

Besides studying variant of the speed scaling problems on single processor, re-
searchers also carried out studies on parallel processors environment. Chen et al.
[6] considered energy-efficient scheduling with and without task migration over
multiprocessor. They proposed approximation algorithm for different settings of
power characteristics where no task was allowed to migrate. When task migration
is allowed and migration cost is assumed being negligible, they showed that there
is an optimal real-time task scheduling algorithm. Albers et al. [7] investigated
the basic problem of scheduling a set of tasks on multi-processor settings with an
aim to minimize the total energy consumption. First they studied the case that
all tasks were unit size and proposed a polynomial time algorithm for agreeable
deadlines. They proved it is NP-Hard for arbitrary release time and deadlines

68 X. Jin et al.

and gave a αα24α-approximation algorithm. For scheduling tasks with arbitrary
processing size, they developed constant factor approximation algorithms. Aupy
et al. [2] studied the minimization of energy on a set of processors for which
the tasks assignment had been given. They investigated different speed scaling
models. Angel et al. [10] consider the multiprocessor migratory and preemptive
scheduling problem with the objective of minimizing the energy consumption.
They proposed an optimal algorithm in the case where the jobs have release
dates, deadlines and the power parameter α > 2.

There were also some literatures to research the performance under an en-
ergy bounded. Pruhs et al. [8] discussed the problem of speed scaling to opti-
mize makespan under an energy budget in a multiprocessor environment where
the tasks had precedence constraints (Pm|prec, energy|Cmax, m is the number
of processors). They reduced the problem to the Qm|prec|Cmax and obtained
a poly-log(m)-approximation algorithm assuming processors can change speed
continuously over time. Greiner et al. [9] studied the trade off between energy
and delay, i.e., their objective was to minimize the sum of energy cost and de-
lay cost. They suggested a randomized algorithm RA for multiple processors:
each task was assigned uniformly at random to the processors, then a single
processor algorithm A was applied separately by each processor. They proved
that the approximation factor of RA was βBα without task migration when
A was a β-approximation algorithm (Bα is the α-th Bell number). They also
showed that any β-competitive online algorithm for a single processor yields a
randomized βBα-competitive online algorithm for multiple processors without
migration. Using the method of conditional expectations, the results could be
transformed to a derandomized version with additional running time. Angel et
al. [10] also extended their algorithm, which considered minimizing the energy
consumption, to obtain an optimal algorithm for the problem of maximum late-
ness minimization under a budget of energy.

However, all of these results were established without taking into account the
restricted parallel processors. More formally, let the set of tasks J and the set
of processors P construct a bipartite graph G = (J + P , E), where the edge
of E denotes a task can be assigned to a processor. The previous work study
G is a complete bipartite graph, i.e., for any two vertices, v1∈J and v2∈P , the
edge v1v2 is in G. We study the energy-efficient scheduling that G is a general
bipartite graph, i.e., v1v2 may be not an edge of G.

Our Contribution: In this paper, we address the problem of task Scheduling
with the objective of Energy Minimization on Restricted Parallel Processors
(SEMRPP). It assumes all tasks are ready at time 0 and share a common deadline
(a real-time constraint) [2, 4, 6, 7]. In this work, We discuss the continuous speed
settings that processors can run at arbitrary speed in [smin, smax]. In Section 2,
we provide the formal description of model. Section 3 discusses some preliminary
results and reformulate the problem as an Integer Programming (IP) problem.
In Section 4, we devise a polynomial time optimal scheduling algorithm in the

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 69

case where the tasks have an uniform size. For the general case that the tasks
have non-uniform computational work, in Section 5, we present a 2α−1(2− 1

mα)-
approximation algorithm, where α is the power parameter and m is the number
of processors. Finally we conclude the paper in Section 6. To the best of our
knowledge, our work may be the initial attempt to study energy optimization
on the restricted parallel processors.

2 Problem and Model

We model the SEMRPP problem of scheduling a set J = {J1, J2, ..., Jn} of n
independent tasks on a set P = {P1, P2, ..., Pm} of m processors. Each task Jj
has an amount of computational work wj which is defined as the number of the
required CPU cycles for the execution of Jj [3]. We refer to the set Mj ⊆ P
as eligibility processing set of the task Jj , that is, Jj needs to be scheduled on
one of its eligible processors Mj(Mj �= φ). We also say that Jj is allowable
on processor Pi ∈ Mj, and is not allowed to migrate after it is assigned on a
processor. A processor can process at most one task at a time and all processors
are available at time 0.

At any time t, the speed of Jj is denoted as sjt, and the corresponding pro-
cessing power is Pjt = (sjt)

α. The amount of CPU cycles wj executed in a time
interval is the speed integrated over duration time and energy consumption Ej is
the power integrated over duration time, that is, wj =

∫
sjtdt and Ej =

∫
Pjtdt,

following the classical models of the literature [2, 3, 4, 5, 6, 7, 8, 9, 10]. Note that
in this work we focus on speed scaling and all processors are alive during the
whole execution, so we do not take static energy into account [2, 8]. Let cj be the
time when the task Jj finishes its execution. Let xij be an 0− 1 variable which
is equal to one if the task Jj is processed on processor Pi and zero otherwise.
We note that xij = 0 if Pi /∈ Mj . Our goal is to schedule the tasks on processors
to minimize the overall energy consumption when each task could finish before
the given common deadline C and be processed on its eligible processors. Then
the SEMRPP problem is formulated as follows:

(P0) min

n∑

j=1

∫
Pjtdt

s.t. cj ≤ C ∀Jj ,
m∑

i=1

xij = 1 ∀Jj ,

xij∈{0, 1} ∀Jj , Pi ∈ Mj,

xij = 0 ∀Jj , Pi /∈ Mj.

70 X. Jin et al.

3 Preliminary Lemma

We start by giving preliminary lemmas for reformulating the SEMRPP problem.

Lemma 1. If S is an optimal schedule for the SEMRPP problem in the continuous
model, it is optimal to execute each task at a unique speed throughout its execution.

Proof. Suppose S is an optimal schedule that some task Jj does not run at a
unique speed during its execution. We denote Jj ’s speeds by sj1, sj2, ..., sjk,
the power of each speed i is (sji)

α, i = (1, 2, ..., k), and the execution time
of the speeds are tj1, tj2, ..., tjk, respectively. So, its energy consumption is
∑k

i=1 tji(sji)
α. We average the k speeds and keep the total execution time un-

changed, i.e., s̄j = (
∑k

i=1 sjitji)/(
∑k

i=1 tji). Because the power function is a
convex function of speed, according to convexity [14] (In the rest of paper, it
will use convexity in many place but will not add reference [14]), we have

k∑

i=1

tji(sji)
α=(

k∑

i=1

tji)(

k∑

i=1

tji
∑k

i=1 tji
(sji)

α)

≥(

k∑

i=1

tji)(

k∑

i=1

tjisji
∑k

i=1 tji
)α = (

k∑

i=1

tji)(s̄j)
α=

k∑

i=1

tji(s̄j)
α

So the energy consumption by unique speed is less than a task run at different
speeds. I.e. , if we do not change Jj ’s execution time and its assignment processor
(satisfying restriction), we can get a less energy consumption scheduling, which
is a contradiction to that S is an optimal schedule.

Corollary 1. There exists an optimal solution for SEMRPP in the continuous
model, for which each processor executes all tasks at a uniform speed, and finishes
its tasks at time C.
All tasks on a processor run at a unique speed can be proved like Lemma 1.
If some processor finishes its tasks earlier than C, it can lower its speed to
consume less energy without breaking the time constraint and the restriction.
Furthermore there will be no gaps in the schedule [8].

Above discussion leads to a reformulation of the SEMRPP problem in the
continuous model as following:

(P1) min

m∑

i=1

(
n∑

j=1

xijwj)
α

Cα−1

s.t.
n∑

j=1

xijwj ≤ smaxC ∀Pi, (1)

m∑

i=1

xij = 1 ∀Jj , (2)

xij∈{0, 1} ∀Jj , Pi ∈ Mj, (3)

xij = 0 ∀Jj , Pi /∈ Mj. (4)

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 71

The objective function is from that a processor Pi runs at speed
ΣJjonPi

wj

C =
Σn

j=1xijwj

C , that is each task on Pi will run at this speed, and Pi will complete all
the tasks on it at time C (It assumes that, in each problem instance, the compu-
tational cycles of the tasks on one processor is enough to hold the processor will
not run at speed si < smin. Otherwise we are like to turn off some processors).
Constraint (1) follows since a processor can not run at a speed higher than smax.
Constraint (2) relates to that if a task has assigned on a processor it will not be
assigned on other processors, i.e, non-migratory. Constraint (3) and (4) are the
restrictions of the task on processors.

Lemma 2. Finding an optimal schedule for SEMRPP problem in the continuous
model is NP-Complete in the strong sense.

Lemma 3. There exists a polynomial time approximation scheme (PTAS) for
SEMRPP problem in the continuous model, when Mj = P and smax is fast
enough.

Note that we give detailed proofs (Due to the space limit, we omit the proof.
See our report [15] for details) of Lemma 2 and Lemma 3 that were similarly
stated as observations in the work [7], and we mainly state the conditions when
they are established in the restricted environment. (such as the set of restricted
processors and the upper speed smax that we discuss below in the paper)

4 Uniform Tasks

We now propose an optimal algorithm for a special case of SEMRPP problem
in which all tasks have equal execution cycles (uniform) (denoted as ECSEM-
RPP Algo algorithm). We set wj = 1, ∀Jj and set C = C/wj in (P1) without
loss of generality. Given the set of tasks J , the set of processors P and the sets of
eligible processors of tasks {Mj}, we construct a network G = (V,E) as follow:
the vertex set of G is V = J ∪ P ∪ {s, t} (s and t correspond to a source and a
destination, respectively), the edge set E of G consists of three subsets: (1)(s, Pi)
for all Pi∈P ; (2)(Pi, Jj) for Pi∈Mj ; (3)(Jj , t) for all Jj∈J . We set unit capacity
to edges (Pi, Jj) and (Jj , t), (s, Pi) have capacity c (initially we can set c = n).
Define L∗ = min{max{Li}}(i = 1, 2, ...,m), Li is the load of processor Pi and
it can be achieved by Algorithm 1 .

Lemma 4. The algorithm BS Algo solves the problem of finding minimization
of maximal load of processor for restricted parallel processors in O(n3logn) time,
if all tasks have equal execution cycles.

Its proof can mainly follow from the Maximum-flow in [16]. The computational
complexity is equal to the time O(n3) to find Maximum-flow multiple logn steps,
i.e, O(n3logn).

We construct our ECSEMRPP Algo algorithm (Algorithm 2) through find-
ing out the min-max load vector l that is a strongly-optimal assignment defined
in [17, 18].

72 X. Jin et al.

Algorithm 1. BS Algo(G,n)

input : (G,n)
output: L∗, Pi that have the maximal load, the set Ji of tasks that load on Pi

1: Let variable l = 1 and variable u = n;
2: If l = u, then the optimal value is reached: L∗ = l, return the Pi and Ji, stop;
3: Else let capacity c = � 1

2
(l+ u)�. Find the Maximum-flow in the network G. If

the value of Maximum-flow is exact n, namely L∗≤c, then set u = c and keep
Pi, Ji by the means of the Maximum-flow. Otherwise, the value of
Maximum-flow is less than n, namely L∗ > c, we set l = c+ 1. Go back to 2.

Algorithm 2. ECSEMRPP Algo

1: Let G0 = G(V, E), PH = φ, JH = {φ1, ..., φm};
2: Call BS Algo(G0, n);
3: Set maximal load sequence index i = i+ 1. According to the scheduling
returned by step 2, we denote the processor that has actual maximal load as
PH
i and denote the tasks set assigned on it as JH

i . EH
i corresponds to the

related edges of PH
i and JH

i . We set G0 = {V \PH
i \JH

i , E\EH
i },

PH = PH∪{PH
i }, φi = JH

i . If G0 �=φ, go to step 2;

4: We assign the tasks of JH
i to PH

i and set all tasks at speed
Σ

Jj∈JH
i

wj

C
on

PH
i . Return the final schedule H .

Definition 1. Given an assignment H denote by Sk the total load on the k most
load of processors. We say that an assignment is strongly-optimal if for any other
assignment H

′
(S

′
k accordingly responds to the total load on the k most load of

processors) and for all 1≤k≤m we have Sk≤S
′
k.

Theorem 1. Algorithm ECSEMRPP Algo finds the optimal schedule for the
SEMRPP problem in the continuous model in O(mn3logn) time, if all tasks
have equal execution cycles.

Proof. First we prove the return assignment H of ECSEMRPP Algo is a
strongly-optimal assignment. We set H = {L1, L2, ..., Lm}, Li corresponds to the
load of processor Pi in non-ascending order. Suppose H

′
is another assignment

that H
′ �=H and {L′

1, L
′
2, ..., L

′
m} corresponds to the load. According to the EC-

SEMRPP Algo algorithm, we know that H
′
can only be the assignment that Pi

moves some tasks to Pj(j < i), because Pi can not move some tasks to Pj′ (j
′
>i)

otherwise it can lower the Li which is a contradiction to ECSEMRPP Algo al-
gorithm. We get Σi

k=1Li≤Σi
k=1L

′
i, i.e., H is a strongly-optimal assignment by

the definition. It turns out that there does not exist any assignment that can
reduce the difference between the loads of the processors in the assignment H .
I.e., there are not other assignment can reduce our aim as it is convexity. So the
optimal scheduling is obtained.

Every time we discard a processor, so the total cost time is m×O(n3logn) =
O(mn3logn) according to Lemma 4, which completes the proof.

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 73

5 General Tasks

As it is NP-Complete in the strong sense for general tasks (Lemma 2), we aim
at getting an approximation algorithm for the SEMRPP problem. First we relax
the equality (3) of (P1) to

0≤xij≤1 ∀Jj , Pi∈Mj (5)

After relaxation, the SEMRPP problem transforms to a convex program. The
feasibility of the convex program can be checked in polynomial time to within
an additive error of ε (for an arbitrary constant ε > 0) [19], and it can be
solved optimally [14]. Suppose x∗ be an optimal solution to the relaxed SEMRPP
problem. Now our goal is to convert this fractional assignment to an integral one
x̄. We adopt the dependent rounding introduced by [18, 20].

Define a bipartite graph G(x∗) = (V,E) where the vertices of G are V = J∪P
and e = (i, j)∈E if x∗

ij>0. The weight on edge (i, j) is x∗
ijwj . The rounding

iteratively modifies x∗
ij , such that at the end x∗

ij becomes integral. There are
mainly two steps as following:

i. Break cycle:
1.While(G(x∗) has cycle C = (e1, e2, ..., e2l−1, e2l))
2.Set C1 = (e1, e3, ..., e2l−1) and C2 = (e2, e4, ..., e2l).
Find minimal weight edge of C, denoted as eCmin and its weight

ε = mine∈C1||e∈C2
e;

3.If eCmin∈C1 then every edge in C1 subtract ε and every edge in C2 add ε;
4.Else every edge in C1 add ε and every edge in C2 subtract ε;
5.Remove the edges with weight 0 from G.
ii. Rounding fractional tasks:
1.In the first rounding phase consider each integral assignment if x∗

ij = 1, set
x̄ij = 1 and discard the corresponding edge from the graph. Denote again by G
the resulting graph;

2.While(G(x∗) has connected component C)
3.Choose one task node from C as root to construct a tree Tr, match each

task node with any one of its children. The resulting matching covers all task
nodes;

4.Match each task to one of its children node (a processor) such that Pi =
argminPi∈PΣx̄ij=1x̄ijwj , set x̄ij = 1, and x̄ij = 0 for other children node re-
spectively.

We denote above algorithm as Relaxation-Dependent-Rounding. Next we anal-
yse the approximation factor it can find.

Theorem 2. (i) Relaxation-Dependent-Rounding finds a 2α−1(2 − 1
pα)-

approximation to the optimal schedule for the SEMRPP problem in the con-
tinuous model in polynomial time, where p = maxMj |Mj |≤m. (ii) For any
processor Pi, ΣJ x̄ijwj < ΣJ x∗

ijwj +maxJ :x∗
ij∈(0,1)wj, x

∗
ij is the fractional task

assignment at the beginning of the second phase. (i.e., extra maximal execution
cycles of linear constraints are violated only by maxJ :x∗

ij∈(0,1)wj)

74 X. Jin et al.

Proof. (i) Denote the optimal solution for the SEMRPP problem as OPT ,H∗ as
the fractional schedule obtained after breaking all cycles and H̄ as the schedule
returned by the algorithm. Moreover, denote byH1 the schedule consisting of the
tasks assigned in the first step, i.e., x∗

ij = 1 right after breaking the cycles and
by H2 the schedule consisting of the tasks assigned in the second rounding step,
i.e., set x̄ij = 1 by the matching process. We have ‖H1‖α≤‖H∗‖α≤‖OPT ‖α1,
where the first inequality follows from H1 is a sub-schedule of H∗ and the second
inequality results from H∗ being a fractional optimal schedule compared with
OPT which is an integral schedule. We consider ‖H1‖α≤‖H∗‖α carefully. If
‖H1‖α = ‖H∗‖α, that is all tasks have been assigned in the first step and the
second rounding step is not necessary, then we have ‖H1‖α = ‖H∗‖α = ‖OPT ‖α.
Such that the approximation is 1. Next we consider ‖H1‖α < ‖H∗‖α, so there
are some tasks assigned in the second rounding step, w.l.o.g., denote as J1 =
{J1, ..., Jk}. We assume the fraction of task Jj assigned on processor Pi is fij
and the largest eligible processor set size p = maxMj |Mj |≤m. Then we have

(‖H∗‖α)α =
m∑

i=1

(ΣJj :x∗
ij=1wj +ΣJj∈J1fij)

α

≥
m∑

i=1

(ΣJj :x∗
ij=1wj)

α +

m∑

i=1

(ΣJj∈J1fij)
α

= (‖H1‖α)α +

m∑

i=1

(ΣJj∈J1fij)
α≥(‖H1‖α)α +

m∑

i=1

k∑

j=1

(fij)
α

= (‖H1‖α)α +

k∑

j=1

m∑

i=1

(fij)
α≥(‖H1‖α)α +

k∑

j=1

(

∑m
i=1 fij
p

)α

= (‖H1‖α)α +
1

pα

k∑

j=1

(wj)
α

(6)

From the fact that H2 schedules only one task per processor, thus optimal inte-
gral assignment for the subset of tasks it assigns and certainly has cost smaller
than any integral assignment for the whole set of tasks. In a similar way we have

(‖H2‖α)α =

k∑

j=1

(wj)
α≤(‖OPT ‖α)α (7)

So the inequality (6) can be reduced to

(‖H∗‖α)α≥(‖H1‖α)α +
1

pα
(‖H2‖α)α (8)

1 In H1 schedule, when the loads of m processors is {lh11 , lh12 , ..., lh1m }, ‖H1‖α means

((lh11)α + (lh12)α + ...+ (lh1m)α)
1
α .

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 75

then

(‖H̄‖α)α = (‖H1 +H2‖α)α≤(‖H1‖α + ‖H2‖α)α

= 2α(
‖H1‖α + ‖H2‖α

2
)α≤2α(

1

2
(‖H1‖α)α +

1

2
(‖H2‖α)α)

≤2α−1((‖H∗‖α)α − 1

pα
(‖H2‖α)α + (‖H2‖α)α)

≤2α−1(2− 1

pα
)(‖OPT ‖α)α

So
(‖H̄‖α)α

(‖OPT ‖α)α≤2α−1(2− 1

pα
)

Which concludes the proof that the schedule H̄ guarantees a 2α−1(2 − 1
pα)-

approximation to optimal solution for the SEMRPP problem and can be found
in polynomial time.

(ii) Seen from above, we also have

ΣJj∈J x̄ijwj < ΣJj∈J x∗
ijwj +maxJj∈J :x∗

ij∈(0,1)wj , ∀Pi

Where the inequality results from the fact that the load of processor Pi in H̄
schedule is the load of H∗ plus the weight of task matched to it. Because we
match each task to one of its child node, i.e., the execution cycle of the adding
task w̄j < maxJj∈J :x∗

ij∈(0,1)wj .

Now we discuss the smax. First we give Proposition 1 to feasible and violation
relationship.

Proposition 1. If (P1) has feasible solution for the SEMRPP problem in the
continuous model, we may hardly to solve (P1) without violating the constraint
of the limitation of the maximal execution cycles of processors.

Obviously, if (P1) has a unique feasible solution, i.e., the maximal execution
cycles of processors is set to the OPT solution value. Then if we can always solve
(P1) without violating the constraint, this means we can easily devise an exact
algorithm for (P1). But we have proof that (P1) is NP-Complete in the strong
sense. Next, we give a guarantee speed which can be regarded as fast enough on
the restricted parallel processors scheduling in the dependent rounding.

Lemma 5. Dependent rounding can get the approximation solution without vi-
olating the maximal execution cycles of processors constraint when
smaxC≥maxPi∈PLi +maxJj∈Jwj, where Li = ΣJj∈Ji

1
|Mj |wj, Ji is the set of

tasks that can be assigned to processor Pi.

Proof. First we denote a vector H = {H1, H2, ..., Hm} in non-ascending sorted
order as the execution cycles of m processors at the beginning of the second step.
We also denote a vector L = {L1, L2, ..., Lm} in non-ascending sorted order as
the execution of m processors that Li = ΣJj∈Ji

1
|Mj |wj . Now we need to prove

76 X. Jin et al.

H1≤L1. Suppose we have H1 > L1, w.l.o.g., assume that the processor P1 has
the execution cycles of H1. We denote the set of tasks assigned on P1 as JH

1 .
Let MH

1 be the set of processors to which a task, currently fractional or integral
assigned on processor P1, can be assigned, i.e., MH

1 =
⋃

Jj∈JH
1
Mj. Similarly

we denote the set of tasks can process on MH
1 as JH and the set of processors

MH for every task in Pi∈MH
1 can be assigned. We have MH =

⋃
Jj∈JH Mj .

W.l.o.g, we denote MH as a set {h1, h2, ..., hk}(1≤k≤m) and also denote a set
{l1, l2, ..., lk}(1≤k≤m) as its corresponding processors set in L. According to the
convexity of the objective, we get Hh1 = Hh2 = ... = Hhk

. By our assumption,
Hhp > Llq ,∀p, ∀q. Then

ΣpHhp > ΣqLlq (9)

Note that each integral task (at the beginning of the second step) in the left
part of inequality (9) can also have its respective integral task in the right part,
but the right part may have some fractional task. So ΣqLlq − ΣpHhp≥0, i.e.,
ΣpHhp≤ΣqLlq , a contradiction to inequality (9). The assumption is wrong, we
have H1≤L1. By Theorem 2’s the maximal execution cycles of dependent round-
ing H̄max, we have following process to finish the proof:

H̄max < H1 +maxJj∈J :x∗
ij∈(0,1)wj≤L1 +maxJj∈J :x∗

ij∈(0,1)wj

≤L1 +maxJj∈Jwj = maxiLi +maxJj∈Jwj .

6 Conclusion

In this paper we explore algorithmic instruments leading to reduce energy con-
sumption on restricted parallel processors. We aim at minimizing the sum of
energy consumption while the speed scaling method is used to reduce energy
consumption under the execution time constraint (Cmax). We first assess the
complexity of scheduling problem under speed and restricted parallel proces-
sors settings. We present a polynomial-time approximation algorithm with a
2α−1(2 − 1

pα)-approximation (p = maxMj |Mj |≤m) factor for the general case
that the tasks have arbitrary size of execution cycles. Specially, when the tasks
have an uniform size, we propose an optimal scheduling algorithm with time
complexity O(mn3logn). (We omit the evaluation results here due to the space
limit, see our report [15] for details.)

Acknowledgement. This work was supported by grants of National Natural
Science Foundation for China (No. 61020106002, No. 61161160566) and Spanish
MINECO/MICINN grant TEC2011-29688-C02-01.

References

1. Mudge, T.: Power: A first-class architecture design constraint. Journal of Com-
puter 34(4), 52–58 (2001)

2. Aupy, G., Benoit, A., Dufossé, F., Robert, Y.: Reclaiming the energy of a sched-
ule: Models and algorithms. INRIA Research report RR-7598 (April 2011); Short
version appeared in SPAA 2011

Energy-Efficient Scheduling with Time and Processors Eligibility Restrictions 77

3. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the IEEE Symposium on Foundation of Computer Science (FOCS
1995), pp. 374–382 (1995)

4. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable
voltage processors. In: Proceeding of the International Symposium on Low Power
Electronics and Design (ISLPED 1998), pp. 197–202 (1998)

5. Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA 2003), pp. 37–46 (2003)

6. Chen, J., Kuo, W.: Multiprocessor energy-efficient scheduling for real-time jobs
with different power characteristics. In: International Conference on Parallel Pro-
cessing (ICPP 2005), pp. 13–20 (2005)

7. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Pro-
ceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA 2007), pp. 289–298 (2007)

8. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory of Computing System 43(1), 67–80 (2008)

9. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiproces-
sor scheduling. In: Proceedings of the 21st Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 2009), pp. 11–18 (2009)

10. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors
with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

11. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud comput-
ing. In: Proceedings of the Conference on Power Aware Computing and Systems
(Hotpower 2008) (2008)

12. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heteroge-
neous processors isn’t as easy as you think. In: ACM-SIAM Symposium on Discrete
Algorithms (SODA 2012), pp. 1242–1253 (2012)

13. Leung, J., Li, L.: Scheduling with processing set restrictions: A survey. International
Journal of Production Economics 116(2), 251–262 (2008)

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

15. Jin, X., Zhang, F., Song, Y., Fan, L., Liu, Z.: Energy-efficient Scheduling with Time
and Processors Eligibility Restrictions. CoRR-abs/1301.4131 (2013),
http://arxiv.org/abs/1301.4131

16. Lin, Y., Li, W.: Parallel machine scheduling of machine-dependent jobs with unit-
length. European Journal of Operational Research 156(1), 261–266 (2004)

17. Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for schedul-
ing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 1997), pp. 493–500
(1997)

18. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.: All-norm approximation algo-
rithms. Journal of Algorithms 52(2), 120–133 (2004)

19. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex pro-
gramming. SIAM Studies in Applied Mathematics. SIAM (1994)

20. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding
in bipartite graphs. In: Proceedings of the IEEE Symposium on Foundation of
Computer Science (FOCS 2002), pp. 323–332 (2002)

http://arxiv.org/abs/1301.4131

	Energy-Efficient Schedulingwith Time and Processors Eligibility Restrictions
	1 Introduction
	2 Problem and Model
	3 Preliminary Lemma
	4 UniformTasks
	5 General Tasks
	6 Conclusion
	References

