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Abstract—The popularization of cloud computing has raised

concerns over the energy consumption that takes place in dat Bl »| Purposeful VM g
centers. In addition to the energy consumed by servers, the the Applications Asslgnment

energy consumed by large numbers of network devices emerges ¥ l Server: Covel
as a significant problem. Existing work on energy-efficient dta o ——

center networking primarily focuses on traffic engineering which Special Features »| Elaborate Traffic
is usually adapted from traditional networks. We propose a of the DCN Enginsennig

new framework to embrace the new opportunities brought by Networl Level

combining some special features of data centers with traffic
engineering. Based on this framework, we characterize the Fig. 1. A general framework for improving the energy efficigrin DCNs.

problem of achieving energy efficiency with a time-aware moell, . .
and we prove its NP-hardness with a solution that has two Showed that, in a typical data center from Google, the nétwor

steps. First, we solve the problem of assigning virtual madhes —power is approximatel\20% of the total power when the
(VM) to servers to reduce the amount of traffic and to generate servers are utilized at00%, but it increases t60% when the
favorable conditions for traffic engineering. The solutionreached utilization of servers decreases 16%, which is quite typical

for this problem is based on three essential principles that . duction dat ¢ Theref . ina th
we propose. Second, we reduce the number of active switcheg” Production data centers. ereiore, improving the energ

and balance traffic flows, depending on the relation between efﬁCienCY_Of the network also becom_es a prir_‘nary concern.
power consumption and routing, to achieve energy conservim. There is a large body of work in the field of energy

EXPerimemﬁl reSU”St 05%r(;ifm that, by.usinthhislframeW%rk, efficiency in Data Center Networks (DCNs). While some
we can achieve up to ener . " : .
comprehensive disgussionoon thg};;&gg}ﬁ; ang grzgtiggl?ﬁ\g (?f ? energy-efficient tppologles have been propos@ ([’ [31).
the framework. most of the studies are focused on traffic engineering and
attempt to consolidate flows onto a subset of links and
switch off unnecessary network elements ([4], [5], [6].)[7]
These solutions are usually based on characterizing tffec tra
pattern by prediction, which is usually not feasible or ig no
precise enough because the traffic patterns vary signifjcant
ATA centers are integrated facilities that house computeepending on the applications.
systems for cloud computing and have been widely We believe that, in order to improve the energy efficiency in
deployed in large companies, such as Google, Yahoo! DCNs, the unique features of data centers should be explored
Amazon. The energy consumption of data centers has becawsre specifically, the following features are relevant:
an essential problem. It is shown inl [1] that the electricity) Regularity of the topologycompared to traditional net-
used in global data centers in 2010 likely accounted fevorks, DCNs use new topologies, such as Fat-Tree [8], BCube
betweenl.1% and 1.5% of the total electricity use and is[9] and DCell [10], which are more regular and symmetric.
still increasing. However, while energy savings techn&gjiee  As a result, it is possible to have better knowledge about the
servers have evolved, the energy consumption of the en@mehysical network.
number of network devices that are used to interconnect thevM assignmentbecause of virtualization, we can determine
servers has emerged as a substantial issue. Abts €fl al.tf] endpoints of the traffic flows, which will have a remark-
. . _ able influence on the network traffic and will, consequently,
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design the VM assignment based on a comprehensive applications usually show regular communication pattexies
derstanding of the applications’ characteristics and domb et al. [12] profiled the network patterns of several typical
them with the aforementioned network features (e.g., mpgl MapReduce jobs, including Sort, Word Count, Hive Join,
end-to-end connectivity). This purposeful VM assignmettt w and Hive Aggregation, which represent an important class of
provide us with favorable traffic conditions on the DCN andgpplications that reside in data centers. They observadtha
thus, gain some energy savings in advance before performafghese jobs generate substantial traffic during &ol§6-60%
traffic engineering on the network. Then, we will exploref the entire execution. The traffic patterns of these jobs ca
specific traffic engineering solutions according to the gmec mainly be classified into three categories: single pealcatgul
traffic patterns and network features. fixed-width peaks and varying height and width peaks. Having

The main contributions of this paper are highlighted dbese patterns in mind, the network traffic can be scheduled i
follows. First, we provide a new general framework for egergadvance, which will condition the traffic engineering résul
minimization in DCNs. We also conduct exhaustive analysis The characteristics of applications can be obtained by pro-
on how to proceed with this framework and identify newiling runs of jobs. The detailed profiling method is beyone th
issues and challenges. Second, we model the energy-sasgogpe of this paper, but one possible realization can bedfoun
problem in DCNs by using this new framework and analyze [12]. The profiling process can bring ineluctable profilin
its complexity. Third, we provide in-depth analysis on bothverhead, but it can be drastically reduced if the same tgpes
VM assignment and network routing with respect to energgbs with the same input size are run repeatedly. We observe
conservation, showing that there is much room for improvirthat such a scenario is quite common in cloud data centers for
the energy efficiency by making use of some unique featuriégrative data processing such as PageRank [13], where much
of data centers. Fourth, based on the analytical results, afethe data remains unchanged from iteration to iteration, a
provide efficient algorithms to solve the problem. We alsalso in many production environments (e.g.,1[14]), the same
conduct comprehensive experiments to evaluate the effigiejob must be repeated many times with almost identical data.
of our method. Data center networks.To provide reliability and sufficient

The remainder of this paper is organized as follows. Ipisection bandwidth, many researchers have proposedaiter
Section[D), we describe the general framework and discutéges to the traditional 2N tree topology [15]. By providing
how it can be deployed. In addition, we list some newlgicher connectivity, topologies such as Fat-Tree ([8L.]]16
arising issues. In Sectidnllll, we present a time-aware hoddCube [9], DCell [10] and VL2 [[1l7] can handle failures
to describe the energy-saving problem in DCNs based orre gracefully. Among them, Fat-Tree was proposed to use
the new framework and analyze its complexity. We explo@mmodity switches in data centers, which can support any
VM assignment principles for energy saving and provideommunication pattern with full bisection bandwidth.

a traffic-aware energy-efficient VM assignment algorithm in Furthermore, the DCN provides another special benefit:
Section[1V. The routing optimization is addressed in Se¢egularity of the topology. Most of the topologies that are
tion [Vl where we present detailed theoretical analysis aleing used in DCNs follow a multi-tier tree architectureeTh
provide a two-phase energy-efficient routing algorithmc-Sescalability of such topologies is always achieved by scglip
tion [V1] provides the experimental results, and Secfion VEBach individual switch, i.e., by increasing the fan-outiobe
presents some extended discussion on the practicality of switches rather than scaling out the topology itself. Beeau
algorithms. In Section VIll, we summarize related studas] such topologies in different scales always possess alrhest t
in Section[IX, we draw final conclusions. All of the proofssame properties, the optimization efforts that we make for
for the lemmas and theorems in this paper are given in thmall-scale networks can be easily adapted to large-sesle n
Appendix. works with very slight changes. This arrangement enablés us
make use of the unique features of well-structured topekgi
to improve network performance by gaining insights from
small-scale networks.

Although we consider the problem of achieving energy VM assignment. To improve the flexibility and overall
efficiency in DCNs, this framework can be generalized fdiardware-resource utilization, virtualization has beeoem
most performance optimization problems in DCNs. In thidispensable technique in the design and operation of mode
section, we discuss in general how to conduct optimizatiaiata centers. Acting as a bridge, VM assignment provides
work by using this framework, and we identify some newhe possibility of combining application characteristiasd
challenges. The structure of this new framework is illusila traffic engineering. With the goal of improving the network
in Figurel1. performance, an efficient VM assignment can be achieved by

Applications. As an important paradigm for large-scaldéntegrating the characteristics of the running appligaiand
data processing, MapRedude [11] has been widely applige: special features of the network topology. For example,
in modern cloud data centers. Most cloud applications halkeowing the traffic patterns of applications, we can schedul
been ported to MapReduce. For this reason, we focus jobs such that their communication-intensive periods tag-s
typical MapReduce jobs. A typical MapReduce job comprisggered, or jobs with similar communication patterns are sepa
three main phases: Map, Shuffle and Reduce. The networkased into different areas of data centers. As a consequttece
intensively used only in the Shuffle phase to exchange intémad on the network will be more balanced, and the network
mediate results between servers. As a result, MapRedpee-tytilization will be accordingly improved. By assigning VMs

Il. THE GENERAL FRAMEWORK
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in an appropriate way, we will be able to obtain better ihitia For single network elements, energy-saving strategies hav
conditions for the subsequent traffic engineering. been widely explored. Among therspeed scaling[18], [19],
Traffic engineering. As a conventional approach for the[20], [21]) and power down([22], [23]) are two representa-
optimization of network performance, traffic engineeriragh tive techniques. In this paper, we use both strategies in an
also been extensively investigated in DCNs. Most of thditraf integrated way. More precisely, we characterize the power
engineering solutions being used in current data cente&rs aonsumption of a switchv € V by an energy curve, (),
simply adapted from traditional networks. In a traditionalvhich indicates howv consumes power as a function of
operational network, traffic engineering is usually cortddc its transmission speed,. Usually, function f,(x,) can be
by traffic measurement, characterization, modeling and cdormalized as

trol. However, with the specific features that characterize 0 for 2. — 0
fv(xv) = { Y

DCNs, traffic engineering could be quite different from the ,
oy + ppxy  fora, >0

conventional cases. Using the information on traffic pater

provided by VM assignment, a better understanding of thghere 5, represents the fixed amount of power needed to
traffic can be achieved and, consequently, traffic measuteMReep a switch active, whilg, and« are parameters that are
and characterization can be eliminated, which could lead 4g@sqgciated with the switches. In this way, if a switch carrie
more precise traffic engineering results. At the same tinee, Wbad, then it can be shut down and incurs no cost. Otherwise,
can also take advantage of the unique features of the D@ injtial cost is paid at the beginning, and then the cost
topology and design elaborate traffic engineering solstiofhcreases as the assigned load increases. We assume that the
more specifically. power consumption of a switch grows superadditively with
Under this new framework, there are some newly arigs |oad, with o usually being larger thai [21]. Due to the
ing issues and challenges that could require future relseafgmogeneity in DCNS, it is convenient to assume that there is
efforts: a) The applications running in current data centeg yniform cost functiory(-) for all of the switches. The total
show regular communication patterns and can be obtained &t of a network is defined as the total power consumption

profiling. However, the profiling method will directly cortlin  of )| of its switches, which is given by, ey ().
the accuracy of this information. As a result, effective and Ve

efficient profiling methods are highly desired. b) Differemst- B. Applications

rics for network performance could prefer different faddea ~ As we discussed before, the applications can be mainly clas-
traffic conditions, which are conditioned by VM assignmengified into three categories according to their commurocati
Thus, understanding favorable traffic conditions and desigy Patterns. We choose the most general communication pattern
efficient VM assignment algorithms to generate them wiWhich is varying height and width peaks, to build our model.
be crucial in this framework. c) Universal traffic enginegri This communication pattern assumes that there can be teultip
solutions might not be efficient enough for current DCNs. Teommunication-intensive periods during the execution jofa
obtain better results, specific traffic engineering methiods and that the lengths of these periods, as well as the traffic
each specific data center must be explored by making w@@nherated in different periods by this job, can be different

of both the topology features and the traffic patterns that ar Assume that we are given a sgt of jobs that have to be

@)

known in advance. processed simultaneously during the time period of interes
[t1,t,]. We choose timeslots such that during each timeslot,
[1l. M ODELING THE ENERGY-SAVING PROBLEM the traffic is relatively stable. Each jobe 7 is composed of
We present a temporal model for the energy-saving problép tasks that will be processed on a pre-specified ¥Mrom
and analyze its complexity in this section. _the set of VMSM. For each joby, there is a traffic matrix _for
its n; associated VMs, denoted ®;(t), wheret € [t1,¢,] is

A. Data Center and Data Center Network a timeslot.

We consider a data center to be a centralized system inye assume that the communication of a job is concentrated
which a set of servers is connected by a well-designed ngi-certain timeslots. We call each continuous communicatio
work. Assume that there is a set of servers that are repegbernitensive period aransfer Formally, for each joly, we define
by S. To achieve better utilization of the hardware resources, start end )
the jobs are processed by VMs that are hosted by servers. All Tj= {(tji 509 Byi) [ i€ (1, LJ']} )
of the servers are connected by a netw@rk (V, &), wherel  that containsl; transfers that are given by-tuples. In each
is the set of network deviddsand¢ is the set of links. In this 3-tuple, tstart andt<nd represent the start and end time of the

. . . . LX) Jt
work, we focus on switch-centric physical network topoBsi ;-th transfer, respectively, whilB;; denotes the traffic matrix
and use the most representative one, Fat-Tree, to conduct §khe VMs that are present in this transfer, i®,(t) = By,
work. For each switchy € V, the total traffic load that it jf timeslot ¢ € [tstart ¢<nd). We assume that, for any timeslot

: 1 / o
carries can be expressed by = 53 ce.cisincident tov) Yer ¢ ¢ [tstert, tend], there is only background traffic, i.€L; () =

is necessary to eliminate the double counting of each flow

because each flow that arrives at a node must also departC. Problem Description

1Because the network devices are mainly switches, from nquvenwill Ne_xt, We.descnbe the energy-saving pr(.)bllem.m DCNs and
use the termswitchesinstead ofnetwork devices provide a time-aware network energy optimization model to
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redefine this problem. We assume that the VMs will not benservation means that only a source (sink) node can genera
migrated once they have been assigned because in cloud dalsorb) flows, while for the other nodes, the ingress traffic
centers, jobs are usually very smdll [12]. For example, tleguals the egress traffic. Variabje is the total load carried
average completion time of a MapReduce job at Google whg link e, and z, is the total traffic going through node

395 seconds during September 20071[11]. which will never exceed the switch capacity.

The total energy consumed by all of the switches for
processing all of the jobs can then be represented by D. Complexity Analysis

tr . . .
! We now analyze the computational complexity of this
B Z (Z f(xv(t))> ’ ®) problem. In fact, the NP hardness can be proved by a reduction

from the general Quadratic Assignment Problem (QAP), which
wherez, (t) is the load of switchy in timeslott. Our goal is describes the following problem: there is a setqofacilities
to assign all of the VMs to servers such that when we choosed a set of: locations. A distance and a weight are specified
appropriate routing paths for the flows between each pair fofr each pair of locations and facilities, respectively.eTh
VMs, the total costE' is minimized. problem is to assign all of the facilities to different loicais
The optimization procedure can be divided into two closebyith the goal of minimizing the sum of the distances mulégli
related stages: VM assignment and traffic engineering.rGivey the corresponding weights. QAP was first studied by Koop-
an assignment of VMs, the total cost can be minimized byans and Beckmanh [24] and is a well-known strong NP-hard
applying traffic engineering on the network, which solveproblem. Moreover, achieving any constant approximatan f
the energy-efficient routing problem. We first assume that &ne general QAP is also NP-hard. It is believed that even
algorithm A has been given to solve this routing problermobtaining the optimal solution for a moderate scale QAP is
Then, the VM assignment problem can be modeled by thpossible[[25]. Formally, we show the following:
following integer program:

t=t1 \veV

Theorem 1. Finding the optimality of the energy-saving

(IPy) min 3,7, A(D(t)) problem in DCNs is NP-hard.

subject to
Yo Ams - Oy < Cs Vs IV. EXPLORING ENERGY-EFFICIENT VM A SSIGNMENTS
§s€5$%51T1 zz 5 In this section, we seek energy-efficient VM assignment

strategies by exploiting some unique features of the uguall
whereA,, ; indicates whether VMn is assigned to server  well-structured topologies of DCNs. Combining this goaftwi
VariableC,, represents the abstract resources that are requited analysis of the characteristics of the applications, we
by VM m, and C; is the total amount of resources in ongrovide three main principles to guide VM assignment. Based
server. The second constraint means that each VM mustdiethese principles, we propose a traffic-aware energyiesific

assigned to only one servePl(t) is a set of traffic demands VM assignment algorithmWe first provide the following
to be routed in timeslat Each demand i®(t) is described by definitions:

a triple that is composed of a source, a destination and a flow

amount. Once an assignment is givéd(t) can be obtained Definition 1. The power rate of a switch is defined as the
by the active transfer of jobs. power consumed by every unit of its load, ifdx) /x (x > 0).

Next, we discuss the energy-efficient routing problem th&roposition 1. The total power consumption of a network is
algorithmA aims to solve. After obtaining the traffic demandsninimized when the number of active switches is optimum
D(t), this problem can be represented as follows: givenamd their load is evenly balanced and as close R =
network G = (V,&) with a node cost functiory(-) and a (
set of traffic demand®(t), the goal is to inseparably route “(“ b
every demand irD(t) such that the total cost of the network However, this proposition might not be directly applicable
> ey f(xy) is minimized, wherer, is the total load of node in reality. According to the statistics in_[26], the idle pew
v. Formally, this process can be formulated with the follggvinconsumption of ai8-port edge LAN switchusually ranges
integer program. from 76 watts to 150 watts, increasing by approximately0

. watts or more when running at full spedd [4], the authors
(IP5) min 3 0uey flwn) measured the power consumption of a production PRONTO

1/a .
) as possible.

subject to S o Vo 3240 OpenFlow-enabled switch and obtained similar results.
x” ; é e€é€ze is incident tov Ye Vo We also collected the power rating profiles of some commodity
y” - 5 d| - @ Ve switches from vendors’ websites; detailed information ban
¢ LudeD(t) 1717 Fdie found in Table[ll. We can see that the idle power usuall
D4 € {0,1} Vd, e . P Y

occupies a large portion of the total power consumption,
which means that the startup castin our model will be
where &, . is an indicator variable that shows whether thquite high. As a result, we will usually find tha&* > C.
demandd € D(t) goes through edge The 1/2 factor avoids However, because the load in a switch cannot be larger than
counting each flow twice, as stated in subsediion1II-A. Flow, Propositior I might not apply. To consider this finding, we

&4 : flow conservation
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TABLE | :
POWER RATING PROFILES OF SOME TYPICAL COMMODITY SWITCHES Algorlthm 1 OptEEA "
(UNIT: WATTS) Input: topologyg = (V, &), serversS and jobs7
Output: Assignments of VMs\
Product Idle or Nominal | Max 1: for j € J do

Cisco Nexus 3548 152 265 2. Transform VMs into super-VMs

Cisco Nexus 5548Pp 390 600 3- end for

HP 5900AF-48XG 200 260 4: Cluster jobs in7 into groupsH, for i € [1, N?°¢] and

HP 5920AF-24XG 343 366 Hvod 1

Juniper QFX 3600 255 345 5. for 1 < i < NP°d do

6:  Partition the super-VMs for each jop e #H; into K
parts using the mirk-cut algorithm
will assume in the remainder of this work that > C, which 7. Assign super-VMs to servers according to the partition
in turn assumes that > p(a — 1)C*. 8: end for
9: Assign the VMs of jobs inH y».a; into vacant servers

. , od .
A. VM Assignment Principles for Saving Energy in the firstV>*¢ pods flexibly.

We now propose three principles for VM assignment that . .
are intended to achieve a better energy efficiency in DCI\FQ.e mte_r-rgpk traffic is small, the energy saved will be even
We use abottom-upanalysis approach, i.e., in a Fat-Tree, waore S|gr_1|f|cant. L
focus on racks, on pods and finally on the whole data Cent%rAssummg, as abovg, t.hat all VMs from the same job f'.t n

1) Minimizing energy at the rack levelWe first con- t € same rack is realistic. As was noted EE|.[12], most jpbs
centrate on determining the optimal number of Top-of-RaéQ a Iarge-_scale data center can be fuII_y assigned to a S'T‘g'e
(ToR) switches because ToR switches are different fromrot QCk and, in general, _there will be f(_aw .JObS that Sh"?“e a link
switches in the network. Once there is at least one acti\)«zfelser"’lt the same tlme_. This last feature 1S, 1N fa.‘Ct’ very Impdrtan
in the rack, the corresponding ToR switch cannot be shutdo&% us because, in our model, we will assign jobs that have

because there might be some inter-rack traffic. ToR switcht %m_plten];lentary tga{'ﬂc pat(tjgfrfns tot th samebpo;_l. rl]rll th'z way,
also carry intra-rack traffic, which will not be forwarded to € interierence between difierent jobs can be hignly reauc

: : 3) Minimizing energy at the pod levelWe now study how
other switches. As a result, the power consumption of the TQR’ . . g
switches will be largely conditioned by the VM assignmen(EO assign VMs among different ppds and whether it is better
0 assign all of a job’s VMs to different pods or keep them
?c')gether in one single pod. The next theorem provides the
Theorem 2. (Principle 1) The optimal VM assignment com-answer.
pacts VMs into racks as tightly as possible to minimize t

power consumption of the ToR switches.

The following theorem introduces how to assign VMs to rack

hI%eorem 4. (Principle 3) An optimal assignment will keep
the VMs from the same job, if feasible, in the same pod.

2) Minimizing energy at the aggregation levelWe now o .
attempt to minimize the energy consumption at the aggregat®: Energy-Efficient VM Assignment
level by choosing the optimal VM assignment and assumingWe devise an optimized energy-efficient VM assignment
that Theoreni2 is being applied; as a result, no ToR switchalgorithm (optEEA) that was based on the three proposed
can be switched off again. We assume a scenario in whiptinciples. This algorithm will assign VMs with favorable
there are a few jobs whose VMs are assigned to one pod draific patterns for saving energy on the network by perjectl
only one job is transferring at a certain timeslot. The nexbserving these principles. The algorithm takes a set of job
theorem follows: (sets of VMs), its traffic patterns and a set of servers astinpu
Then, it returns job assignments (VM assignments) aftangyoi
through the three steps listed in Section IV-A, which cam als

& seen in Algorithritl1, lines,4 and6 — 7.

First, transforming VMs into super-VMs. Allowing each
server to host multiple VMs would bring a high level of

Theoren{B implies that distributing the VMs among multicomplexity to the subsequent steps. The transformation is
ple racks will move some traffic from the ToR switches to theonducted by following the proposition below.

upper-layer network. Hence, because of the rich connéctivp,sition 2. Compacting the VMs that have a high level

in the upper-layer network and the convexity property Qf¢ communication traffic will reduce the network power con-
energy consumption, a significant reduction in power cogymniion.

sumption can be achieved; for example, when- 2, evenly

distributing a job’s VMs intok = 16 or more racks will reduce ~ TO complete this transformation, we define a referential
the energy consumption compared to compacting the jobs ifgffic matrix T§ef for each jobj € J, where

one rack. Because we are considering production data senter ‘)

k > 16 in one pqd is quite realistic as well as, in gengral, T;fef(ml,mQ) — Z T, (t)(m1, ma) (4)
claiming that K will not be smaller thant=-7. Note that if =ty

Theorem 3. (Principle 2) Distributing the VMs intok racks
results in less power consumption than compacting the V
into a single rack, wherd( is the number of racks in one pod
and4s=1 <k < K.
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for any mi,ms € [1,n;]. The referential matrix is used to This definition of distance assumes that any two jobs that
indicate the total traffic generated from any VM to anothdrave similar traffic patterns will have a large distance leetw
VM for this job during the whole job lifetime. For each jobthem. Having these distance vectors, the job clustering-alg
j € J, we shrink VMs to super-VMs by running the followingrithm works as follows: 1) Choos&?°¢ jobs and put them into
process iteratively: 1) Choose the greatest value in matsrtsH; for i € [1, NP°¢] with one job per set, using the traffic
T;Ef . Assume that this value is located in thg-th row and pattern vectors of those jobs as center vecthrsf those sets.
the my-th column. 2) Combine the:;-th VM with the mo-th  We adopt this initializing step from the refinddmeans++
VM by removing the traffic between them and adding up theagorithm [27]. 2) For each of the remaining jobpsfind the
traffic with other VMs. 3) Choose the largest value in the- nearest clustef with respect to the distanoﬁs(@j,ﬁi). If
th row andms-th row, and combine the corresponding VMsthis job can be accommodated into this cluster without any
We denote the VM that results after this shrinking processsource violation, then put this job into sht. Otherwise,
as a super-VM. We repeat this procedure until the resultiehoose the next job that has the largest distance and repeat
super-VM is large enough to exhaust the resources of a sertRis process until there is one cluster that can accommodate
Then, we remove from the matrix all of the VMs that havé. 3) Update the center vector of clusteby averaging all of
been chosen and shrunk, and we find the next largest vathe vectors of jobs in se¥;,
to start a new iteration. With this transformation, all okth > .
jobs will be represented by super-VMs, with each super-VM G = Zejers Pi
assigned to a single server. |Hil

Second, clustering jobs into different podsWe start by Repeat 2) and 3) until all of the jobs have been assigned. If
assuming that every job can be accommodated in a sintfiere are some jobs that cannot find any cluster to accommo-
pod. Nevertheless, if there are very large jobs that requidate them, then put them into an extra %&¢.a, ;. Finally,
more than one pod, we assign them in a greedy way, awe chooseV?°? free pods and assign the jobs in each cluster
then we consider assigning the remaining normal jobs. Frdmthese pods.
Principles 1 and 3, we know that the number of pods that areThird, assigning super-VMs to racks. Inspired by Princi-
used for accommodating all of the jobs must be minimizegle 2, we distribute the super-VMs of each job into multiple
In other words, it is not wise to separate the super-VMs foacks. The simplest way is to randomly partition these super
the same job into different pods if this job can be assign&Ms into K racks, whereK is the total number of racks
into a single pod. Based on this consideration, we estimateone pod. However, as we have stated before, it is better
the number of pods to be used by summing up the resourtesallocate the VMs with the highest traffic flows into the
that are requested by all of the jobs. We denote the estimageane rack. Then, the problem becomes how to partition the
number of pods ad’7°?. Then, we partition the set of the jobsset of super-VMs for the same job int& parts such that
into those N?°? pods by using a revised-means clustering the traffic between each part of the partition is minimized.
algorithm that takes the traffic patterns of the jobs intcaict. This problem is equivalent to the well-known minimurcut
With the intuition that it is better to consolidate jobs thatve problem, which requires finding a set of edges whose removal
strongly different traffic patterns into the same pod to ioyer would partition a graph inté connected components. The VM
the utilization of the network resources, the algorithml wilpartition algorithm used here is adopted from the minimum
compare the traffic patterns of the jobs and cluster them intecut algorithm in [28]. For each jolj, we build a graph
different groups, where the difference in the communicati@j; = (V;,&;), whereV; represents the set of super-VMs
patterns of the jobs in each group will be maximized. and&; represents the traffic between each pair of super-VMs.

To accomplish this goal, we first calculate a traffic patterfhen, we compute the Gomory-Hu tree fG5 and obtain
vectorg; that has size: for each jobj € 7. Each dimension n; — 1 cuts {~;}, which contain the minimum weight cuts
of g; indicates the average traffic between any two VMs dbr all of the super-VM pairs. We remove the smallést- 1
job 7 in each timeslot and is calculated as cuts from{~,} and obtainK connected components ¢f;.

_ For the super-VMs in the same components, we treat them as
Zm17m26[17nj] T;(t)(m1, m2) : :
5 , (5) a super-VM set and assign them into the same rack.

n;/2 After obtaining all of the partitions of the jobs in every

if t e [t3,¢t]; otherwise, we sefT™’ to ¢, where ¢ is pod, we assign these partitions into racks. For each job, we
VEREN ’ J ! . . .
infinitesimal. The traffic pattern vector now can be expréss€©rt the super-VM sets in decreasing order according to the

Vi € [1, NP°4)., (8)

avg g\ _
T; (t) =

as set size. Subsequently, we assign each set of the super</Ms t
G = (Tj“g(tl), T‘;”g(tg), - Tj”g(tr)) . (6) racks in a_greedy manner. When the assignment of the super-

' VMs of a job has been completed, we sort all of the racks in
We then give the following definition: increasing order with respect to the number of used servers,

and we assign the super-VMs for the next job by repeating
the above process, until the super-VMs of all of the jobs have
been assigned. Last, we assign the super-VMs for the jobs in
set Hyroayq to the NPo¢ pods flexibly. Note that this step
dis(j1,42) = dis(@jy» Bis) = o (7) can be accomplished becaud@°? is computed by the total

||—» —

G — Piall2 resources that are required, and witiP°¢ pods, all of the

Definition 2. Given two jobsj, jo € J with traffic pattern
vectorsg;, and g;,, respectively, the distance between th
two jobs is defined as
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‘ . Algorithm 2 EER
Job1 [] Job2 Job3 RN Job4 .
[ o ° B o © Input: topologyG = (V,£) and VMs assignments

% % mlZaZ Output: routes for flows
S 7 |7 1: for t € [t1,¢,] doO
%; a4 2:  Obtain the traffic flows on the network at time
=z | L) | according to the VM assignment
ﬁ TN N B 3 forie (1, N7 do
85 || R1|R2||R1 |R-2 4: Estimate the numberN/?Y of the aggregation
Jobs with super-VMs Pod-1 Pod-1 Pod-2 switches that will be used in thieth pod, and choose
@ ®) © them as the firstV;"Y switches
end for

. 1 core 1 1
Fig. 2. (a) Original jobs’ VMs are transformed to super-VNts) the resulting 6 Estimate the numbeN of core switches that will
super-VMs are clustered into pods using theneans clustering algorithm; be used, .and choo;e them o
(c) after assigning jobs to pods, the super-VMs are assignedcks using 7:  Use multipath routing to distribute all of the flows
the minimumpk-cut algorithm. evenly on the network formed by the selected switches

jpbs should pe accommodateq. The supe(—VMs of jobs wilgz Turn the unused switches into sleep mode
finally be assigned to the physical servers in each rack. o end for

A simple example that shows the whole process from—
the moment the job’s super-VMs are created until they are . . o .
assigned to a rack is illustrated in Figlide 2. In this example TO answer the first question, we bggm with the aggregation
we have4 jobs whose original VMs have been compacted t%V.V'tCheS (We_have shown that nothing can be acgompllshed
4 super-VMs, as shown in Figuié 2(a). Figiide 2(b) shows ho‘(X)th ToR switches once we have the VMs assigned). In

we cluster them into different pods and, finally, in Figlle)2( general, the following lemma applies.

each of the super-VMs is assigned to a rack. Lemma 1. The optimal energy-efficient routing algorithm will
use as few aggregation switches as possible.

V. ENERGY-EFFICIENT ROUTING The same technique can also be applied to the core switches

In this section, we focus on traffic engineering in DCN# we ensure that each flow can be routed by the candidate core
to achieve energy conservation. We first explore the refatigwitches when we choose aggregation switches in each pod.
between energy consumption and routing, and then, basedToiis goal is easy to achieve if we choose aggregation svétche
this relation, we design a two-phase energy-efficient nguti from the same positions in different pods and ensure tha¢ the
algorithm. will be core switches that connect each pair of them. Taken

together, we have

A. Exploring Energy-Saving Properties Corollary 1. In the optimal energy-saving solution, the num-

As we have discussed in the previous section, in reality vieer of active switches is minimized.
haveR* > C. In order to reduce energy consumption, we need
to answer the following questions: how many switches will - .
be sufficient and how should the traffic flows be distributed® TW0-Phase Energy-Efficient Routing

In this section, we will explore the relation between energy Based on the answers to the two questions that we asked

saving and routing, and answer these questions. at the beginning of this section, we devise an energy-efficie
The second question can be answered by the followinguting (EER) algorithm, as presented in Algorittith 2. For
proposition once we have solved the first question. each unit of time, we repeat the following two phases. In the

Proposition 3. With the optimal number of switches deterlcIrSt phase, the algorithm aims to find a subset of switches

. . . . in a bottom-up manner. The estimation of the number of
mined, the best way to achieve energy savings is to balanc%. . . . . L
: ) active switches is accomplished by a simple calculation in
the traffic among all of the used switches.

which we divide the total traffic by the capacity of the switch
This finding is due to the convex manner in which power islowever, because it is possible that the multipath routing
consumed with respect to the traffic load. In DCNs, balancirgdgorithm might not evenly distribute the traffic flows pextly,
the traffic can be accomplished by many multi-path routinge use the first fit decreasing algorithm, which is a good
protocols, such as Equal Cost Multi-Path (ECMP) and Valiaapproximation for the bin-packing problem in which we treat
Load Balancing (VLB) because data centers usually hatlee flows as objects and the maximum transmission rate of the
networks that have rich connectivity, and these multi-pagiwitch as the bin size to ensure that all of the traffic flows can
routing protocols use hash-based or randomized technigbesrouted using the selected switches.
to spread traffic across multiple equal-cost paths. Some mor In the second phase, we borrow the most recently pro-
sophisticated techniques, such as Hedéra [29] and MPT@#&sed multipath routing protocol, MPTCP, to route all of the
([3Q], [31]), can also be applied to ensure uniform traffilows. Compared to the single path routing for each flow in
spread in spite of flow length variations. randomized load balancing techniques, MPTCP can establish



8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ,NO, JANUARY 2014

multiple subflows across different paths between the saiine pa
of endpoints for a single TCP connection. It can be observed
that randomized load balancing might not achieve an even
distribution of traffic because random selection causes hot
spots, where an unlucky combination of random path selectio
causes a few links to be overloaded and causes links elsewher
to have little or no load. By linking the congestion control
dynamics on multiple subflows, MPTCP can explicitly move
traffic away from the more congested paths and place it on
the less congested paths. A sophisticated implementafion o
MPTCP in data centers can be found in][31]. The unused
switches will be turned into sleep or other power-savingg. 3. Energy consumption under the shortest path routimd) BCMP
modes in which little power is required to maintain the statéouting algorithms in a Fat-Tree network with0 switches. Each value
Because we take advantage of application-level traffiepast is averaged amond0 independent tests, and the error bars represent the

h ) . corresponding standard deviations.
in our model, the network state will remain the same most

of the time. Very few state changes will be required, angymber of jobs is determined by varying the utilization of
only on a small numbe_r of switches. According to the routgfie servers from approximately% to 95% such that VM
of the flows, the routing tables are generated and sent d@signment has significant influence on the energy efficiency

corresponding switches at runtime by a centralized cdetrol of the network and all VMs can be accommodated flexibly.
and an OpenFlow installation in the switches.
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V1. EXPERIMENTAL RESULTS B. Benchmarks

In this section, we provide a detailed summary of our exper- To evaluate the efficiency of our VM assignment algorithm,

imental findings. We associate cost functions to the switch@© compare 't? results W'th_a greedy VM a}SS|gnm_ent. Thls
in real data centers, we implement our VM assignment algaeedy VM .a53|gnment algorithm usually assigns an incoming
energy-efficientrouting algorithms presented in the previ0u¥ M to thg f't;St Sr? rV(\a;'\;[Ihathgan seLve dthe computlnlg resogrqes
sections, and we compare the energy consumption againstrﬁ]%ueSte y the , this method Is commonly used in

solutions obtained by commonly used greedy VM assignmé?{t(\)/suculon data centers [25]. . lqorith h
and multi-path routing. e also compare our routing algorithm to a shortest-

path (SP) routing implemented with Dijkstra’s algorithmeW
chose SP over ECMP, even though the latter is a multi-path
algorithm, because ECMP consumes more power and is far

We deploy our framework on a laptop with an Intel Core Zhore time consuming. The latter characteristic arises from
Duo P87002.53GHz CPU with two cores and 4 GB DRAM. the need of ECMP to know all of the multiple paths that
All of the algorithms are implemented in Python. connect every pair of servers, which could be time-consgmin

We use two Fat-Tree topologies wig20 and 720 switches for large-scale topologies and would result in inconveoéen
(1024 and 3456 servers, respectively). The VMs requested bywhen simulating them. With respect to power consumption,
all of the jobs are assumed to be identical, and each ser#EMP consumes more energy than SP independently of the
can handle two VMs. For each switch in the data center,l@ad on a network. To prove this relationship, both ECMP and
maximum processing speed of Thps is given as well as SP were run in a small Fat-Tree network (oRly switches)

a uniform power functionf(z) = o + pz® (x is given in several times while varying the amount of load and recording
Gbps) witho = 200 watts, n = 1 x 10~* watts/(Gbps) and the energy consumption in each case. As shown in Figure 3,
a = 2. Consequently, the maximum power consumption &CMP always consumed more energy than SP. The extra cost
each switch will be300 watts. These parameters define similasf ECMP came from distributing the load among more paths
commodity switches to the switches discussed at the begjnnthan SP and using more switches to route the same amount of
of Section 1V, also meeting the assumpti&i > C. load, which resulted in higher power consumption.

We select a time period of interg$t, ¢,.] such that there are
t, = 100 minutes with a timeslot length of minute, during c
which a set of jobs7 must be processed in the data center. . )
The set of jobsJ is generated synthetically, and each job Ir_1th|s section, we eygluate the performance of the proposed
requests a number of VMs that follows a normal distributioﬂpt'm'zea energy-efficient VM assignment (optEEA) and
N(K,0.5K), where K is the number of servers in one rack&nergy-efficient routing (EER) algorithm by comparing the
Each job is associated with a communication-intensive ting@mbination to4 different combinations of VM assignment
interval, which is uniformly distributed during, ¢,]. Finally, and routing algorithms. Specifically, we compared it with
in each timeslot € [t,, ¢,], a traffic matrixT (¢) that indicates & 9reedy assignment and SP routing; an optimized greedy

the traffic between every pair of the VMs of eagh
yp ghe J 2The difference between an optimized assignment and a nimized

is prOVidEd-_ The tlraﬁiclbetween every pair of VMs fOHC'W%s,signment is applying or not applying the VM to the super-\icking
a normal distribution given byV(50Mbps 1(Mbps)?). The transformation.

A. Environment and Parameters

. Efficiency of Energy Savings
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Fig. 5. Running times used by the energy-efficient VM assigminalgorithm
(a) and greedy algorithm in two data center networks of differgres with (a)
320 and (b)720 switches.
g Greedy-SP —&— S
2 80 OptGreedy-SP —a— D. Running Time
g 70 Greedy-EER —e&—
T 60 OntEEA e e We also recorded the running times of the algorithms used
% 28 Wﬂmg“‘ﬁ&m‘ in the experiments. These results are presented in Figure 5.
% 30 Wﬁ: RIS We find that with the small-scale topology, the proposed
2 ig WM**M“““*“* algorithm can be completed in one second, while with the
g o AA A large-scale topology, the running time is within 10 seconds
0 10 20 30 40 50 60 70 80 90 100 Compared with the greedy algorithm, the running time of the
Data Center Utilization (%) proposed algorithm is onl$0% longer. We have also tested
(b) the proposed algorithm with large-scale topologies (wéthst

Fig. 4. Energy savings ratios under different VM assignmrasthods and of thousands of servers ConneCted)’ most of the time, the

routing algorithms in two data center networks of differsizies with (ajg20 'unning time is bounded by tens of seconds, which is quite

and (b) 720 switches. The ratios are obtained as the energy consumptiacceptable in production data centers.
normalized by the amount consumed using Greedy-SP. Thees/atue
averaged among independent tests, and the error bars represent the sandar
deviations.

VII. DIscuUssION
(OptGreedy) assignment and SP routing; a greedy assignmenie discuss now some practical problems when applying the
and EER; and an energy-efficient VM assignment (EEA) anwhole framework to real data centers.
energy-efficient routing. Online Extension. The model and method that we provided
in this paper are for offline cases. However, in producticiada
centers, there are most likely cases with dynamic job dsriva
These algorithms are tested with two Fat-Tree topologies @f departures. We believe that the proposed algorithms can
different sizes, one wit320 switches and the other witf20. also be applied to online cases because the jobs are basi-
For each algorithm and scenario, we vary the load fédtto  cally assigned to physical machines sequentially. Oneilpless
95%, and we record the power consumptions to compare thdaption can be that, for each job arrival, we first apply the
different performances. These results, which are normdlizVM to super-VM transformation, and then we compute the
by the Greedy-SP result, are presented in Figlites 4 (a) alistances between it and the other jobs running in the data
(b). From the figures, it can be observed that center. According to the distances, we assign this job into
a) a well-designed VM to super-VM transformation reduces pod, and then the remainder of our energy-efficient VM
the network energy consumption, as shown in Figdre 4, lagsignment algorithm, as well as energy-efficient routazm
comparing OptEEA-EER with EEA-EER. This arrangemerite directly applied. We leave a deliberated adaption tonenli
follows the results presented in Propositidn 2. cases as future work.
b) EER can save a substantial amount of energy. As seen in thémplementation. To implement the proposed algorithms
figures, Greedy-EER achieves up 30% savings compared in production data centers, we must introduce a centralized
to Greedy-SP. EER reduces the number of active switchjeb controller to the existing system. This job controller
in the network and balances the load among them. Givenresponsible for determining the VM assignments to the
that the optimal solution, as stated in Proposit[dn 3 aradriving jobs by running optEEA. This job controller is slani
Corollary[1, balances the load among a minimum number tf the resource scheduler in current cloud data center$, suc
active switches, EER can achieve near-optimal solutions. as the VMware capacity planner32]. At the same time, it is
c) Using OptEEA jointly with EER increases the energyery easy to envision our VM assignment algorithm being used
savings because they reduce the power consumption in diif-a cloud data center by modifying the computing framework
ferent ways (as explained in Sectidns| IV dnH V). It can buch as Hadoop) to invoke it. However, a centralized nekwor
seen in Figurél4 that, regardless of the size of the netwodgntroller is required to run EER. This network controllenc
OptEEA-EER outperforms the other algorithms. Combininige easily adapted from a regular OpenFlow controller bexaus
both algorithms can reduce the energy consumption in ttlee use of the OpenFlow network appears to be becoming
network by up t050%. increasingly common in data centers.
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Impact of Traffic Patterns. Because we want to takeB. Energy-Efficient Data Center Networking

advantage of the application-level traffic patterns fronpermp )

layers, these patterns could have a strong influence on pner%'_v'_a”y approaches have been proposed to improve the energy
saving efficiency. Recall that the proposed algorithm aims gfficiency of DCNs. These techniques can usually be cladsifie
consolidate VMs with significant traffic. As a result, the morinto two categories: The first type of technique is designing
uneven the distribution of traffic between each pair of VM8eW topologies that use fewer network devices while guaran-
from a job is, the more energy can be saved. This property!&&Ng similar performance and connectivity, such as tlietla
advantageous for MapReduce systems because, when a jdditerfly proposed by Abtst al. [2] or PCube [[3], a server-
being run, the traffic between different mappers or reduiserscéntric network topology for data centers, which can vary
negligible, although it is significant between any mappet ahe bandwidth avallaplhty _acgorc_img to _tre_lfﬁc. demandseTh
reducer. At the same time, optEEA aims to separate jobs ti§§0Nd type of technique is finding optimization methods for
have similar traffic patterns into different pods. Therefaris ~Current DCNs. The most representative work in this category
better to have jobs from different applications (differenaffic 1S ElasticTree[[5], which is a network-wide power manager
patterns) that run together in the same data center. We &aJ/at can dynamically adjust a set of active network elements
comprehensive understanding of the impact of traffic pasterl© Satisfy variable data center traffic loads. Shangl. [6]

on the efficiency of the whole framework as a future study.considered saving energy from a routing perspective, mguti
flows with as few network devices as possible. Mahadevan

VIIl. RELATED WORK et al. [40] discussed how to reduce the network operational
We summarize some related work on network-related opROWer in large-scale systems and data centers. [41] studied
mization problems in data centers, including VM assignmelte problem of incorporating rate adaptation into dataerent
and traffic engineering as well as energy-efficient dataezenfietworks to achieve energy efficiency. Vasical. [42] devel-

networking. oped a new energy saving scheme that is based on identifying
and using energy-critical paths. Recently, Waeig al. [4]
A. VM Assignment and Traffic Engineering proposed CARPO, a correlation-aware power optimization

Traffic engineering in DCNs has been extensively stu@gorithm that dynamically c_onsolidates traffic flows onto
ied. Because of the centralized environment of data centéisSmall set of links and switches and shuts down unused
centralized controllers are broadly used to schedule oteroff€twork devices. Zhangt al. [7] proposed a hierarchical
traffic flows. Al-Fareset al. proposed Hederd [29], which isModel to optimize the power in DCNs and proposed some
a scalable, dynamic flow scheduling system that adaptivéljnPle heuristics for the model. In[43], the authors coesid
schedules a multi-stage switching fabric to efficientlylizei integrating VM assignment and traffic engineering to imgrov
aggregate network resources. Bensol. [33] proposed Mi- the energy efficiency in data center netwc_)rks. To the best of
croTE, a system that adapts to traffic variations by levergagi OUr knowledg.e., the present paper is the first paper to address
the short term and partial predictability of the traffic nmgtr the power efficiency of DCNs from a comprehensive point of
to provide fine-grained traffic engineering for data center$€W. leveraging an integration of many useful propertfes t
Abu-Libdeh et al. [34] realized that providing application-¢an be utilized in data centers.
aware routing services is advantageous, and they proposed a
symbiotic routing algorithm to achieve specific applicatio
level characteristics. IX. CONCLUSIONS

Recently, data center network virtualization architeesur
such as SecondNét [35] and Oktopus [36] have been proposedn this paper, we study the problem of achieving energy
Both of them consider the virtual cluster allocation prable efficiency in DCNs. Unlike traditional traffic engineering-
i.e., how to allocate VMs to servers while guaranteeing ndiased solutions, we provide a new general framework in which
work bandwidth. In a recent study, Xigt al. [12] proposed some unique features of data centers have been used. Based on
TIVC, a fine-grained virtual network abstraction that madelhis framework, we model an energy-saving problem with a
the time-varying nature of networking requirements of doutime-aware model and prove its NP-hardness. We solve the
applications, to better utilize networking resources. iylenal. problem in two steps. First, we conduct a purposeful VM
[25] proposed using traffic-aware VM placement to improvassignment algorithm that provides favorable traffic page
network scalability. Then, they explored how to achievedyet for energy-efficient routing, based on the three VM assigmnme
resource provisioning using VM multiplexing by explorirtet principles that we propose. Then, we analyze the relation
traffic patterns of VMs[[3[7]. In a follow-up study [38], theybetween the power consumption and routing and propose a
investigated how to consolidate VMs with dynamic bandwidttwo-phase energy-efficient routing algorithm. This altfori
demand by formulating a Stochastic Bin Packing probleaims to minimize the number of switches that will be used and
and proposed an online packing algorithm. Jiatcal. [39] to balance traffic flows among them. The experimental results
explored how to combine VM placement and routing foshow that the proposed framework provides substantial-bene
data center traffic engineering and provided an efficient ofits in terms of energy savings. By combining VM assignment
line algorithm for their combination. However, they did noand routing, up t&0% of the energy can be saved. Moreover,
consider temporal information on the communication pagierthe proposed algorithms can be run in a reasonable amount of
of the applications or the topology features. time and can be applied in large-scale data centers.
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APPENDIX loss of generality, that all of the VMs in sdf can be
A. Proof of Theorem 1 accommodated into the left-side servers without exceettiag

We prove this theorem by showing that any polynomial-tim%va"able, resources. .Assume thgt the traffic betyveen edch pa
deterministic algorithm that can obtain the optimal sa@ntior of VMs in Ada}ndB 'Sh charf?ct(;rlzed byfa mz\a/t;;?, Wf\]/el\;le
our energy-saving problem can be used to solve QAP. Assuﬂém[l)’ m) indicates the traffic flow sent from VM, to
that we are given an instance of QAP withocations andh ~ ""*2* enote
facilities._For these Iocation_s and facili_ties_, we are a_gimen wy = Z Z Q(my,ms), wy = Z Z Q(my,my),
two matricesN,; andN .. of sizen x n to indicate the distance m1eA macA m1CAmacB
between each pair of locations and the cost between any two
facilities, respectively. The total cost of this QAP ingtaris w3 = Y3 Qmime)wa= > > Q(ma,my).

miEBmo€A mi1EBmMmoEB
> Ny(in, iz)Ne (m(in), w(i2)) | 9)

i17i2€[n]

For this configuration, we have in Figuré 6, apart from the
power consumed by the other switches, the power consumed
wherer is a permutation ofn]. The reduction from QAP to by the two ToR switches due to the traffic generated by VMs
our problem is built as follows: 1) createnodes for servers; in A and B, which is represented by’ = 20 + u(w; +
2) for each pair of servers, connect them with a single switcty, + w3)® + (w2 + w3 + w4 )®. Consider now an alternative
3) for a switch connecting two servesg ands;,, define its assignment in which we move all of the VMs fhto the left-
power consumption function ag, ;, (z) = o + N4(i1,i2)z%, side servers. Othe one hand, the right-side ToR switch can be
whereo is a constant aniN (i1, i) is the distance betweenshut down to save energy because there is no VM in the right
the i1-th and thei,-th locations in the QAP instance. Weside. Moreover, the power consumption on the intermediate
treat the facilities as a set of VMs and theroot of the cost network is reduced because there is no traffic through ith@n t
between any two facilitiegN,.)!/* as the traffic flow between other hand, the traffic load carried by the left-side ToR shvit
the corresponding VMs. Therefore, the corresponding grergncreases along with its power consumption. The total power
saving problem is to allocate each VM into one server suclonsumed by the two ToR switches is n@ = o + p(w; +
that the total power consumption of the switches is minimhizews, + w3 + w4 ). We now compare the power consumption in
Given an assignment of VMs (a permutation ofr]), the total both cases. We denot&P as the difference between the two
energy consumption can be expressed by power consumption values. Then, we have

Na(ir, i2) (Ne(n(in), m(i2)) ) ") . (20

| zg[ ](a+ ali1, iz) (Ne((ir), w(iz)) A0 b PPy o s sty ws)® a

21,12 n
It can be verified that the only difference between the total +p(wn .+ wp + ws) Jr_”(wQ +wg o+ wa)”
cost of the QAP instance (formulfl(9)) and the total cost iNext, we consider the following two cases.
our problem (formula{10)) is a constant valu#r. Therefore, Case 1:a > 2. Becauser > p(a — 1)C?, we haveo >
when we obtain the optimal solution for our problem, th_e(oz - 1_)0“ > uC* > p(wy + we + ws + wq)®. The third
VM assignment is also optimal for the corresponding QAMequality follows fromw; + ws + w3 +ws < C. Then, we
As a result, any polynomial-time deterministic algorithnat have AP > 0. _ _
optimally solves the energy-saving problem in DCNs can ease 2:1 < o < 2. We define the function
borrowed to solve QAP. Thus, the proof is complete. Fwa, ws) =(wy + wa + ws)® + (wa + w3 + ws)®

o (12)
— (w1 +w2+w3—|—w4) .

B. Proof of Proposition 1. . o
Recall that the cost function of each switch is defined asltais easy to check that the partial derivatives fffws, ws)
constant plus the load-dependent part (as shown in[Eq. (B non-negative W{g\en both, andw; are non-negative, i.e.,
The optimal solution aims to balance the load on the switché$x2:42) > 0 and /(2:4s) > (. This arrangement means
because of the convexity of the load-dependent cost. Hentf&gt the functionf(wz,ws) is monotonically increasing with

the total power consumption of a network is minimized wheboth w, andws. By settingw, = w3 = 0, we have
the power rate of every active switch is minimized. In other AP > o o o o

+pu(wy +wy, — (w1 +w
words, we choose paths to route flows such thate,)/z., - p (i i IC a4) )
is minimized for anyv € V,, whereV, [S% is the set _of > pC* (a—1) +p (2 (—) - C“) (13)
active switches. This goal can be achieved by choosing all 2
x, (v € V,) to be evenly balanced and as close as possible _ uce <a+ 2a1,1 B 2) > 0.

to (m)l/a, which is denoted a&*. . . _
The second inequality derives from the fact thgt + w§ —
C. Proof of Theorem 2. (w1 + wq)® is minimized whenw, = wy = C'/2 with wy +
We focus on two arbitrary ToR switches in a Fat-Tree suchs < C. The last inequality can be easily verified.
as the ToR switch in FigurEl 6. Lett and B represent the In summary, AP > 0 holds for anya > 1, which
set of VMs assigned to the servers connected by the twonsolidates the VM results into a more energy-efficient
switches. To conduct our comparison, we assume, withaugtwork. As a result, compacting VMs into racks as tightly as
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as long ask > 4577, it is possible to distribute all of the
VMs among theservers in one pod to reduce the power
consumption.

E. Proof of Theorem 4.

Fig. 6. Two ToR switches connected by a network with a gentelogy. ASS_Ume that we have one job With_ all of its VMs assigned
to a single podA. Next, consider moving some VMs from

we can and, hence, minimizing the number of ToR switché® & new podB. Consider the simple case in which we move

improves the network energy efficiency. the VMs from a whole rack ind to an empty rack inB.
Fat-Tree has the property that, for each aggregation switch
D. Proof of Theorem 3. the outer fan-out (to other pods) is not larger than the inner

Given a set of jobs where only one job has significar®n-out (to ToR switches within the pod). Then, the number
networking requirements, we focus on the assignment of A node-disjoint paths between any two ToR switchesAin
VMs for that job. First, we consider an even distribution ofill not be smaller than the paths between two ToR switches

these VMs ink different racks. We denote the intra-rack traffié A and B. As a result, moving the VMs from a whole rack
on each ToR switch as; (1 < i < k) and the inter-rack © 2 different pod will never reduce the traffic on any ToR or

traffic between2 racksi; andiy asw;,, (1 < iy,is < k). aggregation syvitch; it will bring extra t_raffic in core swhtes,
We assume that we only use half of the aggregation switcH&ghout reducing the power consumption.
to carry the load evenly. The total power consumption of the

switches in this scenario pds F. Proof of Proposition 2.
. N @ The proof can easily be seen from the fact that the traffic
between any VMs assigned to the same server does not go to
b= Z ol Z Wiria the physical NICs on the host server as well as the network.
=t f2741 N (14) Then, it is quite natural to assign VMs for the same job to
k Zz:l 22#1 Wi iy the same servers to reduce the network traffic. In this sense,
+ D) X H 9 % % ’ compacting VMs with high communication traffic will reduce

the traffic on the network, resulting in more energy savings.
while assigning all of the VMs into a single rack assumes a

total power consumption of G. Proof of Lemma 1.
k k k A\ We focus on the aggregation switches in one pod. Recall
1= i i, Wigi
Py =p (Z R DR AT ) (15)
i=1

5 that in the Fat-Tree topology, the connectivity between ToR
switches and aggregation switches is supported by all-to-a
For the sake of tractability, we consider the case in whith dnapping links. Thus, we can choose any aggregation switch
of the ;s are roughly equal, with the value denotediasnd t0 carry any ingress or egress flows of a ToR switch. We denote
all of thew;,;,s are roughly identical, with the value denotedhe minimum number of aggregation switches to be used as
asw. This scenario is quite common in MapReduce jobs afy*??. We will show that for anyn > N“99, the minimum
other cloud computing applications. DefideP = P, — P,. total power consumption of the aggregation switches obthin

Then, we have usingn aggregation switches will always be smaller than that
kk—1) \° obtained by using: + 1 aggregation switches.
AP =pu (ku—i— Tw) Assume that in the optimal solution with aggregation
i switches, the total load going through tli¢h aggregation
—kp(u+ (E=Dw)® = Zp((k—1Dw)” switch isp; € (0,C] (1 < i < n), while usingn + 1
o 2 aggregation switches, this valuegise (0,C] (1 <i < n+1).
> uk® (u+ M) Because all of the switches are identical, without loss of
2 generality, we assume that . ; is the highest load among all
— pk ((u+ (k= Dw)* + p((k—1)w)?) q; and thatp; and the remaining; are sorted in descending

N (k—1w\” N order. Denotingd;, = p; — ¢; for 1 < ¢ < n, we have
>k (“ L — ) —kp (u+2(k - Hw) gni1 = Y7, 8;. Because both solutions are optimal, it can
be observed thai; > 0 for 1 < i < n. Usingn switches, the

>(k® — k4™ (u + @) >0, total power consumption is presented as
(16) o
where the second inequality is due to the convexity of the P(n) =no+ szi 5 17)
i=1

power consumption incurred by traffic loads, and the last
inequality derives from our assumption that> 45-7. Thus, While usingn + 1 switches, the total power consumption is

n n o
3The startup cost is not considered because there are no switches thaP(n + 1) = (n+ 1)o + p 2:(1)Z —6)%+ Z 0; | . (18)
can be switched off at this point. i1 i—1
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To complete the proof, it is sufficient to show that for any
n > N9, we haveP(n+1) > P(n). Denoting the difference
between the two optimal solutions asP, then

AP =P(n+1) — P(n)
=b+ uZ((pi —0)* —pi) + <Z 51')

Note thatAP is a function of the variableg and §, where
7= (p1,p2,...pn) andé = (61,02, ...,6,). Becausey and &
are independent ang} > 0, AP is minimized when we set
p=(C,C,...,C). In other words,

AP Za—i-,uzn:((C —0,)=CY)+pu (i@')
i=1 =1
- nC \“ -
ZU+M<Z(R+1> —ZC")

i=1

(19)

>uC + 41 ((n +1)

)
oo (25 )

>uC® <a—1—|—n<
n—+ «

ala—1)
n—+ o
whena > 1. The second inequality derives from the fact that
AP is minimized when we sef = <vn—il, < n—il) The
third inequality is due to the restriction that> nC*(a—1) >
0. The fourth inequality is obtained by applying the necegsar
condition onn that the first derivative equals zero. Having
AP > 0 means that using fewer aggregate switches results in
better energy efficiency.

(o3

>0,
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