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Abstract—The popularization of cloud computing has raised
concerns over the energy consumption that takes place in data
centers. In addition to the energy consumed by servers, the
energy consumed by large numbers of network devices emerges
as a significant problem. Existing work on energy-efficient data
center networking primarily focuses on traffic engineering, which
is usually adapted from traditional networks. We propose a
new framework to embrace the new opportunities brought by
combining some special features of data centers with traffic
engineering. Based on this framework, we characterize the
problem of achieving energy efficiency with a time-aware model,
and we prove its NP-hardness with a solution that has two
steps. First, we solve the problem of assigning virtual machines
(VM) to servers to reduce the amount of traffic and to generate
favorable conditions for traffic engineering. The solutionreached
for this problem is based on three essential principles that
we propose. Second, we reduce the number of active switches
and balance traffic flows, depending on the relation between
power consumption and routing, to achieve energy conservation.
Experimental results confirm that, by using this framework,
we can achieve up to50% energy savings. We also provide a
comprehensive discussion on the scalability and practicability of
the framework.

Index Terms—Data center networks, energy efficiency, virtual
machine assignment, traffic engineering.

I. I NTRODUCTION

DATA centers are integrated facilities that house computer
systems for cloud computing and have been widely

deployed in large companies, such as Google, Yahoo! or
Amazon. The energy consumption of data centers has become
an essential problem. It is shown in [1] that the electricity
used in global data centers in 2010 likely accounted for
between1.1% and 1.5% of the total electricity use and is
still increasing. However, while energy savings techniques for
servers have evolved, the energy consumption of the enormous
number of network devices that are used to interconnect the
servers has emerged as a substantial issue. Abts et al. [2]
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Fig. 1. A general framework for improving the energy efficiency in DCNs.

showed that, in a typical data center from Google, the network
power is approximately20% of the total power when the
servers are utilized at100%, but it increases to50% when the
utilization of servers decreases to15%, which is quite typical
in production data centers. Therefore, improving the energy
efficiency of the network also becomes a primary concern.

There is a large body of work in the field of energy
efficiency in Data Center Networks (DCNs). While some
energy-efficient topologies have been proposed ([2], [3]),
most of the studies are focused on traffic engineering and
attempt to consolidate flows onto a subset of links and
switch off unnecessary network elements ([4], [5], [6], [7]).
These solutions are usually based on characterizing the traffic
pattern by prediction, which is usually not feasible or is not
precise enough because the traffic patterns vary significantly
depending on the applications.

We believe that, in order to improve the energy efficiency in
DCNs, the unique features of data centers should be explored.
More specifically, the following features are relevant:
a) Regularity of the topology:compared to traditional net-
works, DCNs use new topologies, such as Fat-Tree [8], BCube
[9] and DCell [10], which are more regular and symmetric.
As a result, it is possible to have better knowledge about the
physical network.
b) VM assignment:because of virtualization, we can determine
the endpoints of the traffic flows, which will have a remark-
able influence on the network traffic and will, consequently,
condition the traffic engineering.
c) Application characteristics:most applications in cloud data
centers are run under the MapReduce paradigm [11], which
can cause recognizable communication patterns. Making use
of these characteristics can help eliminate the need for traffic
prediction and obtain better traffic engineering results.

To take full advantage of these new opportunities, we
propose a new general framework (as illustrated in Figure 1)
for achieving energy efficiency in DCNs, where the specific
information on both the applications and the network will be
deeply explored and coherently utilized. We will carefully
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design the VM assignment based on a comprehensive un-
derstanding of the applications’ characteristics and combine
them with the aforementioned network features (e.g., topology,
end-to-end connectivity). This purposeful VM assignment will
provide us with favorable traffic conditions on the DCN and,
thus, gain some energy savings in advance before performing
traffic engineering on the network. Then, we will explore
specific traffic engineering solutions according to the specific
traffic patterns and network features.

The main contributions of this paper are highlighted as
follows. First, we provide a new general framework for energy
minimization in DCNs. We also conduct exhaustive analysis
on how to proceed with this framework and identify new
issues and challenges. Second, we model the energy-saving
problem in DCNs by using this new framework and analyze
its complexity. Third, we provide in-depth analysis on both
VM assignment and network routing with respect to energy
conservation, showing that there is much room for improving
the energy efficiency by making use of some unique features
of data centers. Fourth, based on the analytical results, we
provide efficient algorithms to solve the problem. We also
conduct comprehensive experiments to evaluate the efficiency
of our method.

The remainder of this paper is organized as follows. In
Section II, we describe the general framework and discuss
how it can be deployed. In addition, we list some newly
arising issues. In Section III, we present a time-aware model
to describe the energy-saving problem in DCNs based on
the new framework and analyze its complexity. We explore
VM assignment principles for energy saving and provide
a traffic-aware energy-efficient VM assignment algorithm in
Section IV. The routing optimization is addressed in Sec-
tion V, where we present detailed theoretical analysis and
provide a two-phase energy-efficient routing algorithm. Sec-
tion VI provides the experimental results, and Section VII
presents some extended discussion on the practicality of our
algorithms. In Section VIII, we summarize related studies,and
in Section IX, we draw final conclusions. All of the proofs
for the lemmas and theorems in this paper are given in the
Appendix.

II. T HE GENERAL FRAMEWORK

Although we consider the problem of achieving energy
efficiency in DCNs, this framework can be generalized for
most performance optimization problems in DCNs. In this
section, we discuss in general how to conduct optimization
work by using this framework, and we identify some new
challenges. The structure of this new framework is illustrated
in Figure 1.

Applications. As an important paradigm for large-scale
data processing, MapReduce [11] has been widely applied
in modern cloud data centers. Most cloud applications have
been ported to MapReduce. For this reason, we focus on
typical MapReduce jobs. A typical MapReduce job comprises
three main phases: Map, Shuffle and Reduce. The network is
intensively used only in the Shuffle phase to exchange inter-
mediate results between servers. As a result, MapReduce-type

applications usually show regular communication patterns. Xie
et al. [12] profiled the network patterns of several typical
MapReduce jobs, including Sort, Word Count, Hive Join,
and Hive Aggregation, which represent an important class of
applications that reside in data centers. They observed that all
of these jobs generate substantial traffic during only30%-60%
of the entire execution. The traffic patterns of these jobs can
mainly be classified into three categories: single peak, repeated
fixed-width peaks and varying height and width peaks. Having
these patterns in mind, the network traffic can be scheduled in
advance, which will condition the traffic engineering results.

The characteristics of applications can be obtained by pro-
filing runs of jobs. The detailed profiling method is beyond the
scope of this paper, but one possible realization can be found
in [12]. The profiling process can bring ineluctable profiling
overhead, but it can be drastically reduced if the same typesof
jobs with the same input size are run repeatedly. We observe
that such a scenario is quite common in cloud data centers for
iterative data processing such as PageRank [13], where much
of the data remains unchanged from iteration to iteration, and
also in many production environments (e.g., [14]), the same
job must be repeated many times with almost identical data.

Data center networks.To provide reliability and sufficient
bisection bandwidth, many researchers have proposed alterna-
tives to the traditional 2N tree topology [15]. By providing
richer connectivity, topologies such as Fat-Tree ([8], [16]),
BCube [9], DCell [10] and VL2 [17] can handle failures
more gracefully. Among them, Fat-Tree was proposed to use
commodity switches in data centers, which can support any
communication pattern with full bisection bandwidth.

Furthermore, the DCN provides another special benefit:
regularity of the topology. Most of the topologies that are
being used in DCNs follow a multi-tier tree architecture. The
scalability of such topologies is always achieved by scaling up
each individual switch, i.e., by increasing the fan-out of single
switches rather than scaling out the topology itself. Because
such topologies in different scales always possess almost the
same properties, the optimization efforts that we make for
small-scale networks can be easily adapted to large-scale net-
works with very slight changes. This arrangement enables usto
make use of the unique features of well-structured topologies
to improve network performance by gaining insights from
small-scale networks.

VM assignment. To improve the flexibility and overall
hardware-resource utilization, virtualization has become an
indispensable technique in the design and operation of modern
data centers. Acting as a bridge, VM assignment provides
the possibility of combining application characteristicsand
traffic engineering. With the goal of improving the network
performance, an efficient VM assignment can be achieved by
integrating the characteristics of the running applications and
the special features of the network topology. For example,
knowing the traffic patterns of applications, we can schedule
jobs such that their communication-intensive periods are stag-
gered, or jobs with similar communication patterns are sepa-
rated into different areas of data centers. As a consequence, the
load on the network will be more balanced, and the network
utilization will be accordingly improved. By assigning VMs
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in an appropriate way, we will be able to obtain better initial
conditions for the subsequent traffic engineering.

Traffic engineering. As a conventional approach for the
optimization of network performance, traffic engineering has
also been extensively investigated in DCNs. Most of the traffic
engineering solutions being used in current data centers are
simply adapted from traditional networks. In a traditional
operational network, traffic engineering is usually conducted
by traffic measurement, characterization, modeling and con-
trol. However, with the specific features that characterize
DCNs, traffic engineering could be quite different from the
conventional cases. Using the information on traffic patterns
provided by VM assignment, a better understanding of the
traffic can be achieved and, consequently, traffic measurement
and characterization can be eliminated, which could lead to
more precise traffic engineering results. At the same time, we
can also take advantage of the unique features of the DCN
topology and design elaborate traffic engineering solutions
more specifically.

Under this new framework, there are some newly aris-
ing issues and challenges that could require future research
efforts: a) The applications running in current data centers
show regular communication patterns and can be obtained by
profiling. However, the profiling method will directly condition
the accuracy of this information. As a result, effective and
efficient profiling methods are highly desired. b) Differentmet-
rics for network performance could prefer different favorable
traffic conditions, which are conditioned by VM assignment.
Thus, understanding favorable traffic conditions and designing
efficient VM assignment algorithms to generate them will
be crucial in this framework. c) Universal traffic engineering
solutions might not be efficient enough for current DCNs. To
obtain better results, specific traffic engineering methodsfor
each specific data center must be explored by making use
of both the topology features and the traffic patterns that are
known in advance.

III. M ODELING THE ENERGY-SAVING PROBLEM

We present a temporal model for the energy-saving problem
and analyze its complexity in this section.

A. Data Center and Data Center Network

We consider a data center to be a centralized system in
which a set of servers is connected by a well-designed net-
work. Assume that there is a set of servers that are represented
by S. To achieve better utilization of the hardware resources,
the jobs are processed by VMs that are hosted by servers. All
of the servers are connected by a networkG = (V , E), whereV
is the set of network devices1, andE is the set of links. In this
work, we focus on switch-centric physical network topologies
and use the most representative one, Fat-Tree, to conduct our
work. For each switchv ∈ V , the total traffic load that it
carries can be expressed byxv = 1

2

∑

{e∈E:e is incident tov} ye,
whereye is the total traffic carried by linke. A factor of 1/2
is necessary to eliminate the double counting of each flow
because each flow that arrives at a node must also depart.

1Because the network devices are mainly switches, from now on, we will
use the termswitchesinstead ofnetwork devices.

For single network elements, energy-saving strategies have
been widely explored. Among them,speed scaling([18], [19],
[20], [21]) and power down([22], [23]) are two representa-
tive techniques. In this paper, we use both strategies in an
integrated way. More precisely, we characterize the power
consumption of a switchv ∈ V by an energy curvefv(xv),
which indicates howv consumes power as a function of
its transmission speedxv. Usually, functionfv(xv) can be
formalized as

fv(xv) =

{

0 for xv = 0

σv + µvx
α
v for xv > 0

, (1)

where σv represents the fixed amount of power needed to
keep a switch active, whileµv andα are parameters that are
associated with the switches. In this way, if a switch carries no
load, then it can be shut down and incurs no cost. Otherwise,
an initial cost is paid at the beginning, and then the cost
increases as the assigned load increases. We assume that the
power consumption of a switch grows superadditively with
its load, withα usually being larger than1 [21]. Due to the
homogeneity in DCNs, it is convenient to assume that there is
a uniform cost functionf(·) for all of the switches. The total
cost of a network is defined as the total power consumption
of all of its switches, which is given by

∑

v∈V f(xv).

B. Applications

As we discussed before, the applications can be mainly clas-
sified into three categories according to their communication
patterns. We choose the most general communication pattern,
which is varying height and width peaks, to build our model.
This communication pattern assumes that there can be multiple
communication-intensive periods during the execution of ajob
and that the lengths of these periods, as well as the traffic
generated in different periods by this job, can be different.

Assume that we are given a setJ of jobs that have to be
processed simultaneously during the time period of interest
[t1, tr]. We choose timeslots such that during each timeslot,
the traffic is relatively stable. Each jobj ∈ J is composed of
nj tasks that will be processed on a pre-specified VMm from
the set of VMsM. For each jobj, there is a traffic matrix for
its nj associated VMs, denoted byTj(t), wheret ∈ [t1, tr] is
a timeslot.

We assume that the communication of a job is concentrated
in certain timeslots. We call each continuous communication-
intensive period atransfer. Formally, for each jobj, we define

Tj =
{

(tstartji , tendji ,Bji) | i ∈ [1, Lj]
}

(2)

that containsLj transfers that are given by3-tuples. In each
3-tuple,tstartji andtendji represent the start and end time of the
i-th transfer, respectively, whileBji denotes the traffic matrix
of the VMs that are present in this transfer, i.e.,Tj(t) = Bji

if timeslot t ∈ [tstartji , tendji ]. We assume that, for any timeslot
t 6∈ [tstartji , tendji ], there is only background traffic, i.e.,Tj(t) =
ǫ → 0, and it has only a small influence on the network.

C. Problem Description

Next, we describe the energy-saving problem in DCNs and
provide a time-aware network energy optimization model to
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redefine this problem. We assume that the VMs will not be
migrated once they have been assigned because in cloud data
centers, jobs are usually very small [12]. For example, the
average completion time of a MapReduce job at Google was
395 seconds during September 2007 [11].

The total energy consumed by all of the switches for
processing all of the jobs can then be represented by

E =

tr
∑

t=t1

(

∑

v∈V

f(xv(t))

)

, (3)

wherexv(t) is the load of switchv in timeslot t. Our goal is
to assign all of the VMs to servers such that when we choose
appropriate routing paths for the flows between each pair of
VMs, the total costE is minimized.

The optimization procedure can be divided into two closely
related stages: VM assignment and traffic engineering. Given
an assignment of VMs, the total cost can be minimized by
applying traffic engineering on the network, which solves
the energy-efficient routing problem. We first assume that an
algorithm A has been given to solve this routing problem.
Then, the VM assignment problem can be modeled by the
following integer program:

(IP1) min
∑tr

t=t1
A(D(t))

subject to
∑

m ∆m,s · Cm ≤ Cs ∀s
∑

s∈S ∆m,s = 1 ∀m
∆m,s ∈ {0, 1} ∀m, s

where∆m,s indicates whether VMm is assigned to servers.
VariableCm represents the abstract resources that are required
by VM m, andCs is the total amount of resources in one
server. The second constraint means that each VM must be
assigned to only one server.D(t) is a set of traffic demands
to be routed in timeslott. Each demand inD(t) is described by
a triple that is composed of a source, a destination and a flow
amount. Once an assignment is given,D(t) can be obtained
by the active transfer of jobs.

Next, we discuss the energy-efficient routing problem that
algorithmA aims to solve. After obtaining the traffic demands
D(t), this problem can be represented as follows: given a
network G = (V , E) with a node cost functionf(·) and a
set of traffic demandsD(t), the goal is to inseparably route
every demand inD(t) such that the total cost of the network
∑

v∈V f(xv) is minimized, wherexv is the total load of node
v. Formally, this process can be formulated with the following
integer program.

(IP2) min
∑

v∈V f(xv)
subject to

xv = 1
2

∑

e∈E:e is incident tov ye ∀v
xv ≤ C ∀v
ye =

∑

d∈D(t) |d| · Φd,e ∀e

Φd,e ∈ {0, 1} ∀d, e
Φd,e : flow conservation

whereΦd,e is an indicator variable that shows whether the
demandd ∈ D(t) goes through edgee. The1/2 factor avoids
counting each flow twice, as stated in subsection III-A. Flow

conservation means that only a source (sink) node can generate
(absorb) flows, while for the other nodes, the ingress traffic
equals the egress traffic. Variableye is the total load carried
by link e, and xv is the total traffic going through nodev,
which will never exceed the switch capacityC.

D. Complexity Analysis

We now analyze the computational complexity of this
problem. In fact, the NP hardness can be proved by a reduction
from the general Quadratic Assignment Problem (QAP), which
describes the following problem: there is a set ofn facilities
and a set ofn locations. A distance and a weight are specified
for each pair of locations and facilities, respectively. The
problem is to assign all of the facilities to different locations
with the goal of minimizing the sum of the distances multiplied
by the corresponding weights. QAP was first studied by Koop-
mans and Beckmann [24] and is a well-known strong NP-hard
problem. Moreover, achieving any constant approximation for
the general QAP is also NP-hard. It is believed that even
obtaining the optimal solution for a moderate scale QAP is
impossible [25]. Formally, we show the following:

Theorem 1. Finding the optimality of the energy-saving
problem in DCNs is NP-hard.

IV. EXPLORING ENERGY-EFFICIENT VM A SSIGNMENTS

In this section, we seek energy-efficient VM assignment
strategies by exploiting some unique features of the usually
well-structured topologies of DCNs. Combining this goal with
the analysis of the characteristics of the applications, we
provide three main principles to guide VM assignment. Based
on these principles, we propose a traffic-aware energy-efficient
VM assignment algorithm.We first provide the following
definitions:

Definition 1. The power rate of a switch is defined as the
power consumed by every unit of its load, i.e.,f(x)/x (x > 0).

Proposition 1. The total power consumption of a network is
minimized when the number of active switches is optimum
and their load is evenly balanced and as close toR∗ =
(

σ
µ(α−1)

)1/α

as possible.

However, this proposition might not be directly applicable
in reality. According to the statistics in [26], the idle power
consumption of a48-port edge LAN switchusually ranges
from 76 watts to150 watts, increasing by approximately40
watts or more when running at full speed. In [4], the authors
measured the power consumption of a production PRONTO
3240 OpenFlow-enabled switch and obtained similar results.
We also collected the power rating profiles of some commodity
switches from vendors’ websites; detailed information canbe
found in Table I. We can see that the idle power usually
occupies a large portion of the total power consumption,
which means that the startup costσ in our model will be
quite high. As a result, we will usually find thatR∗ > C.
However, because the load in a switch cannot be larger than
C, Proposition 1 might not apply. To consider this finding, we
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TABLE I
POWER RATING PROFILES OF SOME TYPICAL COMMODITY SWITCHES

(UNIT: WATTS)

Product Idle or Nominal Max
Cisco Nexus 3548 152 265
Cisco Nexus 5548P 390 600
HP 5900AF-48XG 200 260
HP 5920AF-24XG 343 366
Juniper QFX 3600 255 345

will assume in the remainder of this work thatR∗ > C, which
in turn assumes thatσ > µ(α− 1)Cα.

A. VM Assignment Principles for Saving Energy

We now propose three principles for VM assignment that
are intended to achieve a better energy efficiency in DCNs.
We use abottom-upanalysis approach, i.e., in a Fat-Tree, we
focus on racks, on pods and finally on the whole data center.

1) Minimizing energy at the rack level:We first con-
centrate on determining the optimal number of Top-of-Rack
(ToR) switches because ToR switches are different from other
switches in the network. Once there is at least one active server
in the rack, the corresponding ToR switch cannot be shut down
because there might be some inter-rack traffic. ToR switches
also carry intra-rack traffic, which will not be forwarded to
other switches. As a result, the power consumption of the ToR
switches will be largely conditioned by the VM assignment.
The following theorem introduces how to assign VMs to racks.

Theorem 2. (Principle 1) The optimal VM assignment com-
pacts VMs into racks as tightly as possible to minimize the
power consumption of the ToR switches.

2) Minimizing energy at the aggregation level:We now
attempt to minimize the energy consumption at the aggregation
level by choosing the optimal VM assignment and assuming
that Theorem 2 is being applied; as a result, no ToR switches
can be switched off again. We assume a scenario in which
there are a few jobs whose VMs are assigned to one pod and
only one job is transferring at a certain timeslot. The next
theorem follows:

Theorem 3. (Principle 2) Distributing the VMs intok racks
results in less power consumption than compacting the VMs
into a single rack, whereK is the number of racks in one pod
and 4

α
α−1 ≤ k ≤ K.

Theorem 3 implies that distributing the VMs among multi-
ple racks will move some traffic from the ToR switches to the
upper-layer network. Hence, because of the rich connectivity
in the upper-layer network and the convexity property of
energy consumption, a significant reduction in power con-
sumption can be achieved; for example, whenα = 2, evenly
distributing a job’s VMs intok = 16 or more racks will reduce
the energy consumption compared to compacting the jobs into
one rack. Because we are considering production data centers,
k > 16 in one pod is quite realistic as well as, in general,
claiming thatK will not be smaller than4

α
α−1 . Note that if

Algorithm 1 optEEA
Input: topologyG = (V , E), serversS and jobsJ
Output: Assignments of VMsM

1: for j ∈ J do
2: Transform VMs into super-VMs
3: end for
4: Cluster jobs inJ into groupsHi for i ∈ [1, Npod] and

HNpod+1

5: for 1 ≤ i ≤ Npod do
6: Partition the super-VMs for each jobj ∈ Hj into K

parts using the min-k-cut algorithm
7: Assign super-VMs to servers according to the partition
8: end for
9: Assign the VMs of jobs inHNpod+1 into vacant servers

in the firstNpod pods flexibly.

the inter-rack traffic is small, the energy saved will be even
more significant.

Assuming, as above, that all VMs from the same job fit in
the same rack is realistic. As was noted in [12], most jobs
in a large-scale data center can be fully assigned to a single
rack and, in general, there will be few jobs that share a link
at the same time. This last feature is, in fact, very important
for us because, in our model, we will assign jobs that have
complementary traffic patterns to the same pod. In this way,
the interference between different jobs can be highly reduced.

3) Minimizing energy at the pod level: We now study how
to assign VMs among different pods and whether it is better
to assign all of a job’s VMs to different pods or keep them
together in one single pod. The next theorem provides the
answer.

Theorem 4. (Principle 3) An optimal assignment will keep
the VMs from the same job, if feasible, in the same pod.

B. Energy-Efficient VM Assignment

We devise an optimized energy-efficient VM assignment
algorithm (optEEA) that was based on the three proposed
principles. This algorithm will assign VMs with favorable
traffic patterns for saving energy on the network by perfectly
observing these principles. The algorithm takes a set of jobs
(sets of VMs), its traffic patterns and a set of servers as input.
Then, it returns job assignments (VM assignments) after going
through the three steps listed in Section IV-A, which can also
be seen in Algorithm 1, lines2,4 and6− 7.

First, transforming VMs into super-VMs. Allowing each
server to host multiple VMs would bring a high level of
complexity to the subsequent steps. The transformation is
conducted by following the proposition below.

Proposition 2. Compacting the VMs that have a high level
of communication traffic will reduce the network power con-
sumption.

To complete this transformation, we define a referential
traffic matrixTref

j for each jobj ∈ J , where

T
ref
j (m1,m2) =

tr
∑

t=t1

Tj(t)(m1,m2) (4)
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for any m1,m2 ∈ [1, nj]. The referential matrix is used to
indicate the total traffic generated from any VM to another
VM for this job during the whole job lifetime. For each job
j ∈ J , we shrink VMs to super-VMs by running the following
process iteratively: 1) Choose the greatest value in matrix
T

ref
j . Assume that this value is located in them1-th row and

them2-th column. 2) Combine them1-th VM with them2-th
VM by removing the traffic between them and adding up their
traffic with other VMs. 3) Choose the largest value in them1-
th row andm2-th row, and combine the corresponding VMs.
We denote the VM that results after this shrinking process
as a super-VM. We repeat this procedure until the resulting
super-VM is large enough to exhaust the resources of a server.
Then, we remove from the matrix all of the VMs that have
been chosen and shrunk, and we find the next largest value
to start a new iteration. With this transformation, all of the
jobs will be represented by super-VMs, with each super-VM
assigned to a single server.

Second, clustering jobs into different pods.We start by
assuming that every job can be accommodated in a single
pod. Nevertheless, if there are very large jobs that require
more than one pod, we assign them in a greedy way, and
then we consider assigning the remaining normal jobs. From
Principles 1 and 3, we know that the number of pods that are
used for accommodating all of the jobs must be minimized.
In other words, it is not wise to separate the super-VMs for
the same job into different pods if this job can be assigned
into a single pod. Based on this consideration, we estimate
the number of pods to be used by summing up the resources
that are requested by all of the jobs. We denote the estimated
number of pods asNpod. Then, we partition the set of the jobs
into thoseNpod pods by using a revisedk-means clustering
algorithm that takes the traffic patterns of the jobs into account.
With the intuition that it is better to consolidate jobs thathave
strongly different traffic patterns into the same pod to improve
the utilization of the network resources, the algorithm will
compare the traffic patterns of the jobs and cluster them into
different groups, where the difference in the communication
patterns of the jobs in each group will be maximized.

To accomplish this goal, we first calculate a traffic pattern
vector ~ϕj that has sizer for each jobj ∈ J . Each dimension
of ~ϕj indicates the average traffic between any two VMs of
job j in each timeslot and is calculated as

T
avg
j (t) =

∑

m1,m2∈[1,nj]
Tj(t)(m1,m2)

n2
j/2

, (5)

if t ∈ [tsj , t
t
j ]; otherwise, we setTavg

j to ǫ, where ǫ is
infinitesimal. The traffic pattern vector now can be expressed
as

~ϕj =
(

T
avg
j (t1),T

avg
j (t2), ...,T

avg
j (tr)

)

. (6)

We then give the following definition:

Definition 2. Given two jobsj1, j2 ∈ J with traffic pattern
vectors ~ϕj1 and ~ϕj2 , respectively, the distance between the
two jobs is defined as

dis(j1, j2) = dis(~ϕj1 , ~ϕj2) =
1

||~ϕj1 − ~ϕj2 ||2
. (7)

This definition of distance assumes that any two jobs that
have similar traffic patterns will have a large distance between
them. Having these distance vectors, the job clustering algo-
rithm works as follows: 1) ChooseNpod jobs and put them into
setsHi for i ∈ [1, Npod] with one job per set, using the traffic
pattern vectors of those jobs as center vectors~βi of those sets.
We adopt this initializing step from the refinedk-means++
algorithm [27]. 2) For each of the remaining jobsj, find the
nearest clusteri with respect to the distancedis(~ϕj , ~βi). If
this job can be accommodated into this cluster without any
resource violation, then put this job into setHi. Otherwise,
choose the next job that has the largest distance and repeat
this process until there is one cluster that can accommodate
it. 3) Update the center vector of clusteri by averaging all of
the vectors of jobs in setHi,

~βi =

∑

j∈Hi
~ϕj

|Hi|
∀i ∈ [1, Npod]. (8)

Repeat 2) and 3) until all of the jobs have been assigned. If
there are some jobs that cannot find any cluster to accommo-
date them, then put them into an extra setHNpod+1. Finally,
we chooseNpod free pods and assign the jobs in each cluster
to these pods.

Third, assigning super-VMs to racks. Inspired by Princi-
ple 2, we distribute the super-VMs of each job into multiple
racks. The simplest way is to randomly partition these super-
VMs into K racks, whereK is the total number of racks
in one pod. However, as we have stated before, it is better
to allocate the VMs with the highest traffic flows into the
same rack. Then, the problem becomes how to partition the
set of super-VMs for the same job intoK parts such that
the traffic between each part of the partition is minimized.
This problem is equivalent to the well-known minimumk-cut
problem, which requires finding a set of edges whose removal
would partition a graph intok connected components. The VM
partition algorithm used here is adopted from the minimum
k-cut algorithm in [28]. For each jobj, we build a graph
Gj = (Vj , Ej), where Vj represents the set of super-VMs
andEj represents the traffic between each pair of super-VMs.
Then, we compute the Gomory-Hu tree forGj and obtain
nj − 1 cuts {γi}, which contain the minimum weight cuts
for all of the super-VM pairs. We remove the smallestK − 1
cuts from{γi} and obtainK connected components ofGj .
For the super-VMs in the same components, we treat them as
a super-VM set and assign them into the same rack.

After obtaining all of the partitions of the jobs in every
pod, we assign these partitions into racks. For each job, we
sort the super-VM sets in decreasing order according to the
set size. Subsequently, we assign each set of the super-VMs to
racks in a greedy manner. When the assignment of the super-
VMs of a job has been completed, we sort all of the racks in
increasing order with respect to the number of used servers,
and we assign the super-VMs for the next job by repeating
the above process, until the super-VMs of all of the jobs have
been assigned. Last, we assign the super-VMs for the jobs in
set HNpod+1 to the Npod pods flexibly. Note that this step
can be accomplished becauseNpod is computed by the total
resources that are required, and withNpod pods, all of the
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Jobs with super-VMs Pod-1 Pod-2 Pod-1 Pod-2

R-1 R-2 R-1 R-2

(a) (b) (c)

Job 1 Job 2 Job 3 Job 4

Fig. 2. (a) Original jobs’ VMs are transformed to super-VMs;(b) the resulting
super-VMs are clustered into pods using thek-means clustering algorithm;
(c) after assigning jobs to pods, the super-VMs are assignedto racks using
the minimumk-cut algorithm.

jobs should be accommodated. The super-VMs of jobs will
finally be assigned to the physical servers in each rack.

A simple example that shows the whole process from
the moment the job’s super-VMs are created until they are
assigned to a rack is illustrated in Figure 2. In this example,
we have4 jobs whose original VMs have been compacted to
4 super-VMs, as shown in Figure 2(a). Figure 2(b) shows how
we cluster them into different pods and, finally, in Figure 2(c),
each of the super-VMs is assigned to a rack.

V. ENERGY-EFFICIENT ROUTING

In this section, we focus on traffic engineering in DCNs
to achieve energy conservation. We first explore the relation
between energy consumption and routing, and then, based on
this relation, we design a two-phase energy-efficient routing
algorithm.

A. Exploring Energy-Saving Properties

As we have discussed in the previous section, in reality we
haveR∗ > C. In order to reduce energy consumption, we need
to answer the following questions: how many switches will
be sufficient and how should the traffic flows be distributed?
In this section, we will explore the relation between energy
saving and routing, and answer these questions.

The second question can be answered by the following
proposition once we have solved the first question.

Proposition 3. With the optimal number of switches deter-
mined, the best way to achieve energy savings is to balance
the traffic among all of the used switches.

This finding is due to the convex manner in which power is
consumed with respect to the traffic load. In DCNs, balancing
the traffic can be accomplished by many multi-path routing
protocols, such as Equal Cost Multi-Path (ECMP) and Valiant
Load Balancing (VLB) because data centers usually have
networks that have rich connectivity, and these multi-path
routing protocols use hash-based or randomized techniques
to spread traffic across multiple equal-cost paths. Some more
sophisticated techniques, such as Hedera [29] and MPTCP
([30], [31]), can also be applied to ensure uniform traffic
spread in spite of flow length variations.

Algorithm 2 EER
Input: topologyG = (V , E) and VMs assignments
Output: routes for flows

1: for t ∈ [t1, tr] do
2: Obtain the traffic flows on the network at timet

according to the VM assignment
3: for i ∈ [1, Npod] do
4: Estimate the numberNagg

i of the aggregation
switches that will be used in thei-th pod, and choose
them as the firstNagg

i switches
5: end for
6: Estimate the numberN core of core switches that will

be used, and choose them
7: Use multipath routing to distribute all of the flows

evenly on the network formed by the selected switches

8: Turn the unused switches into sleep mode
9: end for

To answer the first question, we begin with the aggregation
switches (we have shown that nothing can be accomplished
with ToR switches once we have the VMs assigned). In
general, the following lemma applies.

Lemma 1. The optimal energy-efficient routing algorithm will
use as few aggregation switches as possible.

The same technique can also be applied to the core switches
if we ensure that each flow can be routed by the candidate core
switches when we choose aggregation switches in each pod.
This goal is easy to achieve if we choose aggregation switches
from the same positions in different pods and ensure that there
will be core switches that connect each pair of them. Taken
together, we have

Corollary 1. In the optimal energy-saving solution, the num-
ber of active switches is minimized.

B. Two-Phase Energy-Efficient Routing

Based on the answers to the two questions that we asked
at the beginning of this section, we devise an energy-efficient
routing (EER) algorithm, as presented in Algorithm 2. For
each unit of time, we repeat the following two phases. In the
first phase, the algorithm aims to find a subset of switches
in a bottom-up manner. The estimation of the number of
active switches is accomplished by a simple calculation in
which we divide the total traffic by the capacity of the switch.
However, because it is possible that the multipath routing
algorithm might not evenly distribute the traffic flows perfectly,
we use the first fit decreasing algorithm, which is a good
approximation for the bin-packing problem in which we treat
the flows as objects and the maximum transmission rate of the
switch as the bin size to ensure that all of the traffic flows can
be routed using the selected switches.

In the second phase, we borrow the most recently pro-
posed multipath routing protocol, MPTCP, to route all of the
flows. Compared to the single path routing for each flow in
randomized load balancing techniques, MPTCP can establish
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multiple subflows across different paths between the same pair
of endpoints for a single TCP connection. It can be observed
that randomized load balancing might not achieve an even
distribution of traffic because random selection causes hot-
spots, where an unlucky combination of random path selection
causes a few links to be overloaded and causes links elsewhere
to have little or no load. By linking the congestion control
dynamics on multiple subflows, MPTCP can explicitly move
traffic away from the more congested paths and place it on
the less congested paths. A sophisticated implementation of
MPTCP in data centers can be found in [31]. The unused
switches will be turned into sleep or other power-saving
modes in which little power is required to maintain the state.
Because we take advantage of application-level traffic patterns
in our model, the network state will remain the same most
of the time. Very few state changes will be required, and
only on a small number of switches. According to the routes
of the flows, the routing tables are generated and sent to
corresponding switches at runtime by a centralized controller
and an OpenFlow installation in the switches.

VI. EXPERIMENTAL RESULTS

In this section, we provide a detailed summary of our exper-
imental findings. We associate cost functions to the switches
in real data centers, we implement our VM assignment and
energy-efficientrouting algorithms presented in the previous
sections, and we compare the energy consumption against the
solutions obtained by commonly used greedy VM assignment
and multi-path routing.

A. Environment and Parameters

We deploy our framework on a laptop with an Intel Core 2
Duo P87002.53GHz CPU with two cores and 4 GB DRAM.
All of the algorithms are implemented in Python.

We use two Fat-Tree topologies with320 and720 switches
(1024 and3456 servers, respectively). The VMs requested by
all of the jobs are assumed to be identical, and each server
can handle two VMs. For each switch in the data center, a
maximum processing speed of1 Tbps is given as well as
a uniform power functionf(x) = σ + µxα (x is given in
Gbps) withσ = 200 watts,µ = 1 × 10−4 watts/(Gbps)2 and
α = 2. Consequently, the maximum power consumption of
each switch will be300 watts. These parameters define similar
commodity switches to the switches discussed at the beginning
of Section IV, also meeting the assumptionR∗ > C.

We select a time period of interest[t1, tr] such that there are
tr = 100 minutes with a timeslot length of1 minute, during
which a set of jobsJ must be processed in the data center.
The set of jobsJ is generated synthetically, and each job
requests a number of VMs that follows a normal distribution
N (K, 0.5K), whereK is the number of servers in one rack.
Each job is associated with a communication-intensive time
interval, which is uniformly distributed during[t1, tr]. Finally,
in each timeslott ∈ [t1, tr], a traffic matrixTj(t) that indicates
the traffic between every pair of the VMs of eachj ∈ J
is provided. The traffic between every pair of VMs follows
a normal distribution given byN (50Mbps, 1(Mbps)2). The
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Fig. 3. Energy consumption under the shortest path routing and ECMP
routing algorithms in a Fat-Tree network with20 switches. Each value
is averaged among10 independent tests, and the error bars represent the
corresponding standard deviations.

number of jobs is determined by varying the utilization of
the servers from approximately5% to 95% such that VM
assignment has significant influence on the energy efficiency
of the network and all VMs can be accommodated flexibly.

B. Benchmarks

To evaluate the efficiency of our VM assignment algorithm,
we compare its results with a greedy VM assignment. This
greedy VM assignment algorithm usually assigns an incoming
VM to the first server that can serve the computing resources
requested by the VM; this method is commonly used in
production data centers [25].

We also compare our routing algorithm to a shortest-
path (SP) routing implemented with Dijkstra’s algorithm. We
chose SP over ECMP, even though the latter is a multi-path
algorithm, because ECMP consumes more power and is far
more time consuming. The latter characteristic arises from
the need of ECMP to know all of the multiple paths that
connect every pair of servers, which could be time-consuming
for large-scale topologies and would result in inconvenience
when simulating them. With respect to power consumption,
ECMP consumes more energy than SP independently of the
load on a network. To prove this relationship, both ECMP and
SP were run in a small Fat-Tree network (only20 switches)
several times while varying the amount of load and recording
the energy consumption in each case. As shown in Figure 3,
ECMP always consumed more energy than SP. The extra cost
of ECMP came from distributing the load among more paths
than SP and using more switches to route the same amount of
load, which resulted in higher power consumption.

C. Efficiency of Energy Savings

In this section, we evaluate the performance of the proposed
optimized2 energy-efficient VM assignment (optEEA) and
energy-efficient routing (EER) algorithm by comparing the
combination to4 different combinations of VM assignment
and routing algorithms. Specifically, we compared it with
a greedy assignment and SP routing; an optimized greedy

2The difference between an optimized assignment and a non-optimized
assignment is applying or not applying the VM to the super-VMpacking
transformation.
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Fig. 4. Energy savings ratios under different VM assignmentmethods and
routing algorithms in two data center networks of differentsizes with (a)320
and (b) 720 switches. The ratios are obtained as the energy consumption
normalized by the amount consumed using Greedy-SP. The values are
averaged among5 independent tests, and the error bars represent the standard
deviations.

(OptGreedy) assignment and SP routing; a greedy assignment
and EER; and an energy-efficient VM assignment (EEA) and
energy-efficient routing.

These algorithms are tested with two Fat-Tree topologies of
different sizes, one with320 switches and the other with720.
For each algorithm and scenario, we vary the load from5% to
95%, and we record the power consumptions to compare the
different performances. These results, which are normalized
by the Greedy-SP result, are presented in Figures 4 (a) and
(b). From the figures, it can be observed that
a) a well-designed VM to super-VM transformation reduces
the network energy consumption, as shown in Figure 4, by
comparing OptEEA-EER with EEA-EER. This arrangement
follows the results presented in Proposition 2.
b) EER can save a substantial amount of energy. As seen in the
figures, Greedy-EER achieves up to30% savings compared
to Greedy-SP. EER reduces the number of active switches
in the network and balances the load among them. Given
that the optimal solution, as stated in Proposition 3 and
Corollary 1, balances the load among a minimum number of
active switches, EER can achieve near-optimal solutions.
c) Using OptEEA jointly with EER increases the energy
savings because they reduce the power consumption in dif-
ferent ways (as explained in Sections IV and V). It can be
seen in Figure 4 that, regardless of the size of the network,
OptEEA-EER outperforms the other algorithms. Combining
both algorithms can reduce the energy consumption in the
network by up to50%.
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Fig. 5. Running times used by the energy-efficient VM assignment algorithm
and greedy algorithm in two data center networks of different sizes with (a)
320 and (b)720 switches.

D. Running Time

We also recorded the running times of the algorithms used
in the experiments. These results are presented in Figure 5.
We find that with the small-scale topology, the proposed
algorithm can be completed in one second, while with the
large-scale topology, the running time is within 10 seconds.
Compared with the greedy algorithm, the running time of the
proposed algorithm is only50% longer. We have also tested
the proposed algorithm with large-scale topologies (with tens
of thousands of servers connected); most of the time, the
running time is bounded by tens of seconds, which is quite
acceptable in production data centers.

VII. D ISCUSSION

We discuss now some practical problems when applying the
whole framework to real data centers.

Online Extension. The model and method that we provided
in this paper are for offline cases. However, in production data
centers, there are most likely cases with dynamic job arrivals
or departures. We believe that the proposed algorithms can
also be applied to online cases because the jobs are basi-
cally assigned to physical machines sequentially. One possible
adaption can be that, for each job arrival, we first apply the
VM to super-VM transformation, and then we compute the
distances between it and the other jobs running in the data
center. According to the distances, we assign this job into
a pod, and then the remainder of our energy-efficient VM
assignment algorithm, as well as energy-efficient routing,can
be directly applied. We leave a deliberated adaption to online
cases as future work.

Implementation. To implement the proposed algorithms
in production data centers, we must introduce a centralized
job controller to the existing system. This job controller
is responsible for determining the VM assignments to the
arriving jobs by running optEEA. This job controller is similar
to the resource scheduler in current cloud data centers, such
as the VMware capacity planner [32]. At the same time, it is
very easy to envision our VM assignment algorithm being used
in a cloud data center by modifying the computing framework
(such as Hadoop) to invoke it. However, a centralized network
controller is required to run EER. This network controller can
be easily adapted from a regular OpenFlow controller because
the use of the OpenFlow network appears to be becoming
increasingly common in data centers.
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Impact of Traffic Patterns. Because we want to take
advantage of the application-level traffic patterns from upper
layers, these patterns could have a strong influence on energy
saving efficiency. Recall that the proposed algorithm aims to
consolidate VMs with significant traffic. As a result, the more
uneven the distribution of traffic between each pair of VMs
from a job is, the more energy can be saved. This property is
advantageous for MapReduce systems because, when a job is
being run, the traffic between different mappers or reducersis
negligible, although it is significant between any mapper and
reducer. At the same time, optEEA aims to separate jobs that
have similar traffic patterns into different pods. Therefore, it is
better to have jobs from different applications (differenttraffic
patterns) that run together in the same data center. We leavea
comprehensive understanding of the impact of traffic patterns
on the efficiency of the whole framework as a future study.

VIII. R ELATED WORK

We summarize some related work on network-related opti-
mization problems in data centers, including VM assignment
and traffic engineering as well as energy-efficient data center
networking.

A. VM Assignment and Traffic Engineering

Traffic engineering in DCNs has been extensively stud-
ied. Because of the centralized environment of data centers,
centralized controllers are broadly used to schedule or route
traffic flows. Al-Fareset al. proposed Hedera [29], which is
a scalable, dynamic flow scheduling system that adaptively
schedules a multi-stage switching fabric to efficiently utilize
aggregate network resources. Bensonet al. [33] proposed Mi-
croTE, a system that adapts to traffic variations by leveraging
the short term and partial predictability of the traffic matrix,
to provide fine-grained traffic engineering for data centers.
Abu-Libdeh et al. [34] realized that providing application-
aware routing services is advantageous, and they proposed a
symbiotic routing algorithm to achieve specific application-
level characteristics.

Recently, data center network virtualization architectures
such as SecondNet [35] and Oktopus [36] have been proposed.
Both of them consider the virtual cluster allocation problem,
i.e., how to allocate VMs to servers while guaranteeing net-
work bandwidth. In a recent study, Xieet al. [12] proposed
TIVC, a fine-grained virtual network abstraction that models
the time-varying nature of networking requirements of cloud
applications, to better utilize networking resources. Meng et al.
[25] proposed using traffic-aware VM placement to improve
network scalability. Then, they explored how to achieve better
resource provisioning using VM multiplexing by exploring the
traffic patterns of VMs [37]. In a follow-up study [38], they
investigated how to consolidate VMs with dynamic bandwidth
demand by formulating a Stochastic Bin Packing problem
and proposed an online packing algorithm. Jianget al. [39]
explored how to combine VM placement and routing for
data center traffic engineering and provided an efficient on-
line algorithm for their combination. However, they did not
consider temporal information on the communication patterns
of the applications or the topology features.

B. Energy-Efficient Data Center Networking

Many approaches have been proposed to improve the energy
efficiency of DCNs. These techniques can usually be classified
into two categories: The first type of technique is designing
new topologies that use fewer network devices while guaran-
teeing similar performance and connectivity, such as the flatted
butterfly proposed by Abtset al. [2] or PCube [3], a server-
centric network topology for data centers, which can vary
the bandwidth availability according to traffic demands. The
second type of technique is finding optimization methods for
current DCNs. The most representative work in this category
is ElasticTree [5], which is a network-wide power manager
that can dynamically adjust a set of active network elements
to satisfy variable data center traffic loads. Shanget al. [6]
considered saving energy from a routing perspective, routing
flows with as few network devices as possible. Mahadevan
et al. [40] discussed how to reduce the network operational
power in large-scale systems and data centers. [41] studied
the problem of incorporating rate adaptation into data center
networks to achieve energy efficiency. Vasicet al. [42] devel-
oped a new energy saving scheme that is based on identifying
and using energy-critical paths. Recently, Wanget al. [4]
proposed CARPO, a correlation-aware power optimization
algorithm that dynamically consolidates traffic flows onto
a small set of links and switches and shuts down unused
network devices. Zhanget al. [7] proposed a hierarchical
model to optimize the power in DCNs and proposed some
simple heuristics for the model. In [43], the authors considered
integrating VM assignment and traffic engineering to improve
the energy efficiency in data center networks. To the best of
our knowledge, the present paper is the first paper to address
the power efficiency of DCNs from a comprehensive point of
view, leveraging an integration of many useful properties that
can be utilized in data centers.

IX. CONCLUSIONS

In this paper, we study the problem of achieving energy
efficiency in DCNs. Unlike traditional traffic engineering-
based solutions, we provide a new general framework in which
some unique features of data centers have been used. Based on
this framework, we model an energy-saving problem with a
time-aware model and prove its NP-hardness. We solve the
problem in two steps. First, we conduct a purposeful VM
assignment algorithm that provides favorable traffic patterns
for energy-efficient routing, based on the three VM assignment
principles that we propose. Then, we analyze the relation
between the power consumption and routing and propose a
two-phase energy-efficient routing algorithm. This algorithm
aims to minimize the number of switches that will be used and
to balance traffic flows among them. The experimental results
show that the proposed framework provides substantial bene-
fits in terms of energy savings. By combining VM assignment
and routing, up to50% of the energy can be saved. Moreover,
the proposed algorithms can be run in a reasonable amount of
time and can be applied in large-scale data centers.
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APPENDIX

A. Proof of Theorem 1.
We prove this theorem by showing that any polynomial-time

deterministic algorithm that can obtain the optimal solution for
our energy-saving problem can be used to solve QAP. Assume
that we are given an instance of QAP withn locations andn
facilities. For these locations and facilities, we are alsogiven
two matricesNd andNc of sizen×n to indicate the distance
between each pair of locations and the cost between any two
facilities, respectively. The total cost of this QAP instance is

∑

i1,i2∈[n]

Nd(i1, i2)Nc (π(i1), π(i2)) , (9)

whereπ is a permutation of[n]. The reduction from QAP to
our problem is built as follows: 1) createn nodes for servers;
2) for each pair of servers, connect them with a single switch;
3) for a switch connecting two serverssi1 andsi2 , define its
power consumption function asgi1i2(x) = σ +Nd(i1, i2)x

α,
whereσ is a constant andNd(i1, i2) is the distance between
the i1-th and thei2-th locations in the QAP instance. We
treat the facilities as a set of VMs and theα root of the cost
between any two facilities(Nc)

1/α as the traffic flow between
the corresponding VMs. Therefore, the corresponding energy-
saving problem is to allocate each VM into one server such
that the total power consumption of the switches is minimized.
Given an assignment of VMsπ (a permutation of[n]), the total
energy consumption can be expressed by

∑

i1,i2∈[n]

(

σ +Nd(i1, i2)
(

Nc(π(i1), π(i2))
1/α
)α)

. (10)

It can be verified that the only difference between the total
cost of the QAP instance (formula (9)) and the total cost in
our problem (formula (10)) is a constant valuen2σ. Therefore,
when we obtain the optimal solution for our problem, the
VM assignment is also optimal for the corresponding QAP.
As a result, any polynomial-time deterministic algorithm that
optimally solves the energy-saving problem in DCNs can be
borrowed to solve QAP. Thus, the proof is complete.

B. Proof of Proposition 1.
Recall that the cost function of each switch is defined as a

constant plus the load-dependent part (as shown in Eq. (1)).
The optimal solution aims to balance the load on the switches
because of the convexity of the load-dependent cost. Hence,
the total power consumption of a network is minimized when
the power rate of every active switch is minimized. In other
words, we choose paths to route flows such thatfv(xv)/xv

is minimized for anyv ∈ Va, whereVa ⊆ V is the set of
active switches. This goal can be achieved by choosing all
xv (v ∈ Va) to be evenly balanced and as close as possible

to
(

σ
µ(α−1)

)1/α

, which is denoted asR∗.

C. Proof of Theorem 2.
We focus on two arbitrary ToR switches in a Fat-Tree such

as the ToR switch in Figure 6. LetA and B represent the
set of VMs assigned to the servers connected by the two
switches. To conduct our comparison, we assume, without

loss of generality, that all of the VMs in setB can be
accommodated into the left-side servers without exceedingthe
available resources. Assume that the traffic between each pair
of VMs in A andB is characterized by a matrixQ, where
Q(m1,m2) indicates the traffic flow sent from VMm1 to VM
m2. Denote

w1 =
∑

m1∈A

∑

m2∈A

Q(m1,m2), w2 =
∑

m1∈A

∑

m2∈B

Q(m1,m2),

w3 =
∑

m1∈B

∑

m2∈A

Q(m1,m2), w4 =
∑

m1∈B

∑

m2∈B

Q(m1,m2).

For this configuration, we have in Figure 6, apart from the
power consumed by the other switches, the power consumed
by the two ToR switches due to the traffic generated by VMs
in A and B, which is represented byP1 = 2σ + µ(w1 +
w2 +w3)

α +µ(w2 +w3 +w4)
α. Consider now an alternative

assignment in which we move all of the VMs inB to the left-
side servers. Onthe one hand, the right-side ToR switch can be
shut down to save energy because there is no VM in the right
side. Moreover, the power consumption on the intermediate
network is reduced because there is no traffic through it. On the
other hand, the traffic load carried by the left-side ToR switch
increases along with its power consumption. The total power
consumed by the two ToR switches is nowP2 = σ+ µ(w1 +
w2 +w3 +w4)

α. We now compare the power consumption in
both cases. We denote∆P as the difference between the two
power consumption values. Then, we have

∆P ≥ P1 − P2 ≥ σ − µ(w1 + w2 + w3 + w4)
α

+ µ(w1 + w2 + w3)
α + µ(w2 + w3 + w4)

α.
(11)

Next, we consider the following two cases.
Case 1:α ≥ 2. Becauseσ ≥ µ(α − 1)Cα, we haveσ ≥
µ(α − 1)Cα ≥ µCα ≥ µ(w1 + w2 + w3 + w4)

α. The third
inequality follows fromw1 + w2 + w3 + w4 ≤ C. Then, we
have∆P ≥ 0.
Case 2:1 < α < 2. We define the function

f(w2, w3) =(w1 + w2 + w3)
α + (w2 + w3 + w4)

α

− (w1 + w2 + w3 + w4)
α.

(12)

It is easy to check that the partial derivatives off(w2, w3)
are non-negative when bothw2 andw3 are non-negative, i.e.,
∂f(w2,w3)

∂w2

≥ 0 and ∂f(w2,w3)
∂w3

≥ 0. This arrangement means
that the functionf(w2, w3) is monotonically increasing with
bothw2 andw3. By settingw2 = w3 = 0, we have

∆P ≥ σ + µ (wα
1 + wα

4 − (w1 + w4)
α)

≥ µCα (α− 1) + µ

(

2

(

C

2

)α

− Cα

)

= µCα

(

α+
1

2α−1
− 2

)

≥ 0.

(13)

The second inequality derives from the fact thatwα
1 + wα

4 −
(w1 + w4)

α is minimized whenw1 = w4 = C/2 with w1 +
w4 ≤ C. The last inequality can be easily verified.

In summary,∆P ≥ 0 holds for anyα > 1, which
consolidates the VM results into a more energy-efficient
network. As a result, compacting VMs into racks as tightly as
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Fig. 6. Two ToR switches connected by a network with a generaltopology.

we can and, hence, minimizing the number of ToR switches
improves the network energy efficiency.

D. Proof of Theorem 3.
Given a set of jobs where only one job has significant

networking requirements, we focus on the assignment of the
VMs for that job. First, we consider an even distribution of
these VMs ink different racks. We denote the intra-rack traffic
on each ToR switch asui (1 ≤ i ≤ k) and the inter-rack
traffic between2 racks i1 and i2 aswi1i2 (1 ≤ i1, i2 ≤ k).
We assume that we only use half of the aggregation switches
to carry the load evenly. The total power consumption of the
switches in this scenario pod3 is

P1 =

k
∑

i1=1

µ



ui1 +

k
∑

i2 6=i1

wi1i2





α

+
k

2
× µ

(

∑k
i1=1

∑k
i2 6=i1

wi1i2

2× k
2

)α

,

(14)

while assigning all of the VMs into a single rack assumes a
total power consumption of

P2 = µ

(

k
∑

i=1

ui +

∑k
i1=1

∑k
i2 6=i1

wi1i2

2

)α

. (15)

For the sake of tractability, we consider the case in which all
of theuis are roughly equal, with the value denoted asu, and
all of thewi1i2s are roughly identical, with the value denoted
asw. This scenario is quite common in MapReduce jobs and
other cloud computing applications. Define∆P = P2 − P1.
Then, we have

∆P =µ

(

ku+
k(k − 1)

2
w

)α

− kµ (u+ (k − 1)w)
α −

k

2
µ ((k − 1)w)

α

≥µkα
(

u+
(k − 1)w

2

)α

− µk ((u+ (k − 1)w)
α
+ µ ((k − 1)w)

α
)

≥µkα
(

u+
(k − 1)w

2

)α

− kµ (u+ 2(k − 1)w)
α

>(kα − k4α)µ

(

u+
(k − 1)w

2

)α

> 0,

(16)
where the second inequality is due to the convexity of the
power consumption incurred by traffic loads, and the last
inequality derives from our assumption thatk ≥ 4

α
α−1 . Thus,

3The startup costσ is not considered because there are no switches that
can be switched off at this point.

as long asK ≥ 4
α

α−1 , it is possible to distribute all of the
VMs among theservers in one pod to reduce the power
consumption.

E. Proof of Theorem 4.
Assume that we have one job with all of its VMs assigned

to a single podA. Next, consider moving some VMs fromA
to a new podB. Consider the simple case in which we move
the VMs from a whole rack inA to an empty rack inB.
Fat-Tree has the property that, for each aggregation switch,
the outer fan-out (to other pods) is not larger than the inner
fan-out (to ToR switches within the pod). Then, the number
of node-disjoint paths between any two ToR switches inA
will not be smaller than the paths between two ToR switches
in A andB. As a result, moving the VMs from a whole rack
to a different pod will never reduce the traffic on any ToR or
aggregation switch; it will bring extra traffic in core switches,
without reducing the power consumption.

F. Proof of Proposition 2.
The proof can easily be seen from the fact that the traffic

between any VMs assigned to the same server does not go to
the physical NICs on the host server as well as the network.
Then, it is quite natural to assign VMs for the same job to
the same servers to reduce the network traffic. In this sense,
compacting VMs with high communication traffic will reduce
the traffic on the network, resulting in more energy savings.

G. Proof of Lemma 1.
We focus on the aggregation switches in one pod. Recall

that in the Fat-Tree topology, the connectivity between ToR
switches and aggregation switches is supported by all-to-all
mapping links. Thus, we can choose any aggregation switch
to carry any ingress or egress flows of a ToR switch. We denote
the minimum number of aggregation switches to be used as
Nagg. We will show that for anyn ≥ Nagg, the minimum
total power consumption of the aggregation switches obtained
usingn aggregation switches will always be smaller than that
obtained by usingn+ 1 aggregation switches.

Assume that in the optimal solution withn aggregation
switches, the total load going through thei-th aggregation
switch is pi ∈ (0, C] (1 ≤ i ≤ n), while using n + 1
aggregation switches, this value isqi ∈ (0, C] (1 ≤ i ≤ n+1).
Because all of the switches are identical, without loss of
generality, we assume thatqn+1 is the highest load among all
qi and thatpi and the remainingqi are sorted in descending
order. Denotingδi = pi − qi for 1 ≤ i ≤ n, we have
qn+1 =

∑n
i=1 δi. Because both solutions are optimal, it can

be observed thatδi ≥ 0 for 1 ≤ i ≤ n. Usingn switches, the
total power consumption is presented as

P (n) = nσ + µ
n
∑

i=1

pαi , (17)

While usingn+ 1 switches, the total power consumption is

P (n+ 1) = (n+ 1)σ + µ

n
∑

i=1

(pi − δi)
α +

(

n
∑

i=1

δi

)α

. (18)
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To complete the proof, it is sufficient to show that for any
n ≥ Nagg, we haveP (n+1) ≥ P (n). Denoting the difference
between the two optimal solutions as∆P , then

∆P =P (n+ 1)− P (n)

=b+ µ

n
∑

i=1

((pi − δi)
α − pαi ) + µ

(

n
∑

i=1

δi

)α

.
(19)

Note that∆P is a function of the variables~p and ~δ, where
~p = (p1, p2, ...pn) and ~δ = (δ1, δ2, ..., δn). Because~p and ~δ
are independent andδi ≥ 0, ∆P is minimized when we set
~p = (C,C, ..., C). In other words,

∆P ≥σ + µ

n
∑

i=1

((C − δi)
α − Cα) + µ

(

n
∑

i=1

δi

)α

≥σ + µ

(

n
∑

i=1

(

nC

n+ 1

)α

−
n
∑

i=1

Cα

)

≥µCα + µ

(

(n+ 1)

(

nC

n+ 1

)α

− nCα

)

=µCα

(

(α− 1) + n

((

n

n+ 1

)α

− 1

))

≥µCα

(

α− 1 + n

(

n+ 1

n+ α
− 1

))

=µCαα(α − 1)

n+ α
> 0,

(20)

whenα > 1. The second inequality derives from the fact that
∆P is minimized when we set~δ =

(

C
n+1 ,

C
n+1 , ...,

C
n+1

)

. The

third inequality is due to the restriction thatσ ≥ µCα(α−1) >
0. The fourth inequality is obtained by applying the necessary
condition onn that the first derivative equals zero. Having
∆P > 0 means that using fewer aggregate switches results in
better energy efficiency.
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