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Abstract

Scheduling for energy conservation has become a major concern in the field of

information technology because of the need to reduce energy use and carbon

dioxide emissions. Previous work has focused on the assumption that a task

can be assigned to any processor. In contrast, we initially study the problem of

task scheduling on restricted parallel processors. The restriction takes account

of affinities between tasks and processors; that is, a task has its own eligible

set of processors. We adopt the Speed Scaling (SS) method to save energy un-

der an execution time constraint (on the makespan Cmax), and the processors

can run at arbitrary speeds in [smin, smax]. Our objective is to minimize the

overall energy consumption. The energy-efficient scheduling problem, involv-

ing task assignment and speed scaling, is inherently complex as it is proved

to be NP-complete for general tasks. We formulate the problem as an Integer

Programming (IP) problem. Specifically, we devise a polynomial-time optimal

scheduling algorithm for the case in which tasks have a uniform size. Our algo-

rithm runs in O(mn3 log n) time, where m is the number of processors and n is
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the number of tasks. We then present a polynomial-time algorithm that achieves

a bounded approximation factor when the tasks have arbitrary-size work. Nu-

merical results demonstrate that our algorithm could provide an energy-efficient

solution to the problem of task scheduling on restricted parallel processors.

Keywords: Energy-efficient scheduling; restricted parallel processors; speed

scaling; continuous speed model; approximation algorithm.

1. Introduction

Energy consumption has become an important issue for today’s computa-

tional systems. Dynamic speed scaling is a popular approach to energy-efficient

scheduling. It significantly reduces energy dissipation by dynamically changing

the speeds of the processors. It is well known that speed and power are related5

by a cube-root rule. More precisely, a processor consumes power at a rate pro-

portional to s3 when it runs at a speed s [1, 2]. Most research publications

[3, 4, 5, 6, 7, 8, 9, 10] have assumed a more general power function sα, where

α > 1 is a constant power parameter. Note that the power is a convex function

of the processor speed. Obviously, the energy consumption is the power inte-10

grated over time. Higher speeds allow faster execution, but at the same time

result in higher energy consumption.

In the past few years, energy-efficient scheduling has received much attention

for both single-processor and parallel-processor environments. In the algorithm

community, the approaches used can generally be categorized into the following15

two classes with respect to reducing energy usage [5, 7]:

1. Dynamic speed scaling. The processors lower their speeds as much as

possible in such a way that they can still execute tasks while fulfilling the

time constraints on those tasks. The reason why energy is saved via this

strategy is the convexity of the power function. The goal is to decide the20

processing speeds in a way that minimizes the total energy consumption

and guarantees the prescribed deadline.
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2. Power-down management. The processors are put into a power-saving

state when they are idle. However, there is an energy cost of the transition

back to the active state. In this strategy, one determines whether there25

exist idle periods that can outweigh the transition cost and decides when

to wake processors from the power-saving mode in order to complete all

tasks in time.

Our paper focuses on energy-efficient scheduling via the dynamic speed scaling

strategy. In this policy, the goals of scheduling are either to minimize the30

total energy consumption or to trade off the conflicting objectives of energy

and performance. The main difference is that the former goal reduces the total

energy consumption as long as the time constraint is not violated, whereas

the latter seeks the best point between the energy cost and some performance

metrics (such as the makespan and flow time).35

Intensive research, initiated by Yao et al. [3], has been done on saving energy

by speed scaling. In previous work, it was assumed that a task can be assigned

to any processor. But it is natural to consider restricted scheduling in modern

computational systems. The reason is that systems have evolved over time, for

example by the use of clusters of processors, so that the various processors in40

a system may differ from each other in their abilities. (For instance, processors

may have different additional components or different memory capacities [11].)

This means that a task can only be assigned to a processor that has the com-

ponents required for that task. That is, there are different affinities between

tasks and processors. In practice, certain tasks may have to be allocated to cer-45

tain physical resources (such as graphics processing units) [12]. It has also been

pointed out that the design of some processors is specialized for particular types

of tasks, and therefore tasks should be assigned to the processor best suited for

them [13]. Furthermore, when tasks and input data are considered, tasks need

to be assigned to the processors that contain their input data (by means of50

Hadoop Data Locality-Aware, for instance [14]). In other words, some of the

tasks can be assigned to a processor set Ai, and some of the tasks to a processor
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set Aj , but Ai 6= Aj , Ai ∩ Aj 6= ∅. Another case in point is scheduling with

processor restrictions aimed at minimizing the makespan. This case has been

studied extensively; see [11] for an excellent survey. Therefore, it is important55

to study scheduling with processor restrictions for reasons of both practical and

algorithmic requirements.

Our contribution: In this paper, we address the problem of task Scheduling

with the objective of Energy Minimization on Restricted Parallel Processors

(SEMRPP). We assume that all tasks are ready at the beginning of the process60

and share a common deadline (a real-time constraint) [2, 4, 6, 7]. We discuss

a continuous speed setting where the processors can run at arbitrary speeds in

[smin, smax]. Our main contributions can be summarized in the following three

groups:

1. We propose an optimal scheduling algorithm for the case when all of the65

tasks have uniform computational work.

2. For the general case in which the tasks have nonuniform computational

work, we prove that the minimization of energy is NP-complete in the

strong sense. We give a 2α−1(2 − 1/pα)-approximation algorithm, where

α is the power parameter and p = maxMj |Mj|, and where Mj is the70

eligible processing set for the task Jj .

3. The performance of the approximation algorithm is evaluated by a set of

simulations after an analysis of the algorithm, and it is found that the

simulation results are consistent with the proposed scheduling algorithm.

To the best of our knowledge, our work may be the first attempt to study75

energy consumption optimization with restricted parallel processors.

The remainder of this paper is organized as follows. Section II describes

previous work on speed scaling. Section III provides a formal description of

the model. Section IV first discusses some preliminary results and formulates

the problem as an integer programming problem. Then we devise a polynomial-80

time optimal scheduling algorithm in the case where the tasks have uniform size,

and present a bounded-factor approximation algorithm for the general case in
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which the tasks have arbitrary-size work. Section V presents numerical results.

Finally, we conclude the paper in Section VI.

2. Related Work85

Yao et al. [3] were the first to explore the problem of scheduling a set of

tasks with the least amount of energy in a single-processor environment via speed

scaling. They proposed an optimal offline greedy algorithm and two bounded

online algorithms, named Optimal Available and Average Rate. Ishihara et

al. [4] formulated the problem of energy minimization in dynamical voltage90

scheduling as an integer linear programming problem where all tasks were ready

at the beginning and shared a common finishing time. They showed that in the

optimal solution a processor runs at only two adjacent discrete speeds when it

can use only a small number of discrete processor speeds.

Besides studying variants of the speed scaling problem on a single proces-95

sor, researchers have also carried out studies on parallel-processor environments.

Chen et al. [6] considered energy-efficient scheduling with and without task mi-

gration in a multiprocessor system. They proposed an approximation algorithm

for different settings of the power characteristics where no task was allowed to

migrate. When task migration was allowed and the migration cost was assumed100

to be negligible, they showed that there was an optimal real-time task-scheduling

algorithm. Albers et al. [7] investigated the basic problem of scheduling a set

of tasks in a multiprocessor setting with the objective of minimizing the to-

tal energy consumption. First, they studied the case in which all tasks have

unit size, and proposed a polynomial-time algorithm for agreeable deadlines.105

They proved that this case is NP-hard for arbitrary release times and deadlines

and gave an αα24α-approximation algorithm. For scheduling tasks with arbi-

trary processing size, they developed constant-factor approximation algorithms.

Aupy et al. [2] studied the minimization of energy for a set of processors for

which a task assignment had been given, and investigated different speed scaling110

models. Angel et al. [10] considered a multiprocessor migratory and preemptive
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scheduling problem with the objective of minimizing the energy consumption.

They proposed an optimal algorithm in the case where the jobs have release

dates, deadlines, and a power parameter α > 2.

There are also some publications that describe research on performance with115

an energy bound. Pruhs et al. [8] discussed the problem of speed scaling to opti-

mize the makespan under the constraint of an energy budget in a multiprocessor

environment where the tasks had precedence constraints (Pm|prec, energy|Cmax,

where m is the number of processors). They reduced the problem to Qm|prec|Cmax

and obtained a poly-log(m)-approximation algorithm assuming that the proces-120

sors can change speed continuously over time. Greiner et al. [9] presented

research on the trade-off between energy and delay; i.e., their objective was to

minimize the sum of the energy cost and delay cost. They suggested a random-

ized algorithm RA for multiple processors: each task was assigned uniformly at

random to a processor, and then the single-processor algorithm A was applied125

separately to each processor. They proved that the approximation factor for

RA was βBα without task migration when A was a β-approximation algorithm

(here, Bα is the α-th Bell number). They also showed that any β-competitive

online algorithm for a single processor yields a randomized βBα-competitive

online algorithm for multiple processors without migration. Using the method130

of conditional expectations, the results could be transformed to a derandom-

ized version with additional running time. Angel et al. [10] also extended their

algorithm by considering minimizing the energy consumption, so as to obtain

an optimal algorithm for the problem of maximum-lateness minimization under

the constraint of an energy budget.135

However, all of these results were established without taking restricted par-

allel processors into account. More formally, let the set of tasks J and the set

of processors P construct a bipartite graph G = (J + P , E), where an edge of

E denotes that a task can be assigned to a processor. In previous work, G was

a complete bipartite graph, i.e., for any two vertices v1 ∈ J and v2 ∈ P , the140

edge v1v2 is in G. We study the problem of energy-efficient scheduling in which

G is a general bipartite graph, i.e., v1v2 need not be an edge of G.

6



We emphasize that, as stated in recent reports [15, 16], every year the energy

costs of computer systems are on the order of billions of dollars. Given this, a

reduction in the energy costs by a small percentage could result in savings of145

billions of dollars.

3. Problem and Model

We model the SEMRPP problem of scheduling a set J = {J1, J2, . . . , Jn} of

n independent tasks on a set P = {P1, P2, . . . , Pm} of m processors. Each task

Jj has an amount of computational work wj , which is defined as the number of150

CPU cycles required for the execution of Jj [3]. We refer to the set Mj ⊆ P as

the eligible processing set for the task Jj ; that is, Jj needs to be scheduled on

one of its eligible processors Mj (Mj 6= ∅). We also say that Jj is allowable on

processor Pi ∈ Mj , and is not allowed to migrate after it has been assigned to

a processor (it is nonmigratory). A processor can process at most one task at a155

time, and all processors are available at the beginning of the operation.

At any time t, the speed of Jj is denoted as sjt, and the corresponding

processing power is (sjt)α. The number of CPU cycles wj executed in a time

interval is the speed integrated over time, and the energy consumption Ej is the

power integrated over time; that is, wj =
∫

sjt dt and Ej =
∫

(sjt)α dt, following

the classical models in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10]. Note that in this

work we focus on speed scaling and all processors are alive during the whole

execution, and so we do not take static energy into account [2, 7, 8, 9]. Let cj

be the time when the task Jj finishes its execution. Let xij be a 0–1 variable

which is equal to one if task Jj is processed on processor Pi and zero otherwise.

Note that xij = 0 if Pi /∈Mj . Our goal is to schedule the tasks on the processors

to minimize the overall energy consumption, where each task must finish before

the given common deadline C and be processed on its eligible processors. The

SEMRPP problem is then formulated as follows:

(P0) min
n∑

j=1

∫
(sjt)α dt
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s.t. cj ≤ C ∀Jj ,

m∑

i=1

xij = 1 ∀Jj ,

xij∈{0, 1} ∀Jj , Pi ∈ Mj ,

xij = 0 ∀Jj , Pi /∈ Mj.

4. Algorithms and Analysis

In this section, we start by giving preliminary lemmas so that we can refor-

mulate the SEMRPP problem. After that, we present an exact algorithm using

the maximum flow to deal with the situation where the tasks have a uniform160

size, and give a proof of correctness. Finally, we seek a polynomial-time approx-

imation algorithm with a constant bounded factor for the general case in which

tasks have different numbers of execution cycles.

4.1. Preliminary Lemma

Lemma 1. If S is an optimal schedule for the SEMRPP problem in the con-165

tinuous model, it is optimal to execute each task at a unique speed throughout

its execution.

Proof. Suppose S is an optimal schedule in which some task Jj does not run at

a unique speed during its execution. We denote Jj ’s speeds by sj1, sj2, . . . , sjk,

the power for each speed i is (sji)α, i = (1, 2, . . . , k), and the execution times

for these speeds are tj1, tj2, . . . , tjk, respectively. So, the energy consumption

is
∑k

i=1 tji(sji)α. We average the k speeds and keep the total execution time

unchanged, i.e., s̄j = (
∑k

i=1 sjitji)/(
∑k

i=1 tji). Because the power function is a

convex function of the speed, we have the following result because of Jensen’s
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inequality [17] and convexity [18]:

k∑

i=1

tji(sji)α=

(
k∑

i=1

tji

)(
k∑

i=1

tji∑k
i=1 tji

(sji)α

)

≥
(

k∑

i=1

tji

)(
k∑

i=1

tjisji∑k
i=1 tji

)α

=

(
k∑

i=1

tji

)
(s̄j)

α

=
k∑

i=1

tji(s̄j)α.

(In the rest of the paper, we shall use convexity in many places but will not

repeatedly cite reference [18].) So, the energy consumption for a unique speed

is less than that for a task run at different speeds. That is, if we do not change170

Jj ’s execution time and its assigned processor (satisfying the restriction), we

can obtain a schedule with less energy consumption, which contradicts the as-

sumption that S is an optimal schedule. Note that this perspective has also

been mentioned in [2].

Corollary 1. There exists an optimal solution to SEMRPP in the continuous175

model in which each processor executes all tasks at a uniform speed and finishes

its tasks at time C.

The case where all tasks on a processor run at a unique speed can be proved

like Lemma 1. If some processor finishes its tasks earlier than C, it can lower

its speed to consume less energy without breaking the time constraint and the180

restriction. Furthermore, there will be no gaps in the schedule [8].

The above discussion leads to a reformulation of the SEMRPP problem in

the continuous model as follows:

(P1) min
m∑

i=1

(
n∑

j=1

xijwj

)α

Cα−1
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s.t.
n∑

j=1

xijwj ≤ smaxC ∀Pi, (1)

m∑

i=1

xij = 1 ∀Jj , (2)

xij ∈ {0, 1} ∀Jj , Pi ∈Mj , (3)

xij = 0 ∀Jj , Pi /∈Mj . (4)

The objective function is obtained from assuming that processor Pi runs at a

speed (ΣJj on Piwj)/C = (Σn
j=1xijwj)/C; that is, each task on Pi will run at this

speed, and Pi will complete all the tasks on it at time C. (This assumes that,185

in each problem instance, the number of computational cycles for the tasks on

one processor is enough to ensure that the processor will not run at a speed

si < smin. Otherwise, we are likely to turn off some processors.) Constraint (1)

follows, since a processor cannot run at a speed higher than smax. Constraint

(2) relates to the fact that if a task has been assigned to a processor it will not190

be assigned to other processors, i.e., it is nonmigratory. Constraints (3) and (4)

are the restrictions of the tasks to particular processors.

Lemma 2. Finding an optimal schedule for the SEMRPP problem in the con-

tinuous model is NP-complete in the strong sense.

Proof. First, we transform the optimization problem to an associated decision195

problem: given restrictions on the time and the eligible processors, and a bound

on the energy consumption, is there a schedule such that the restrictions and

the bound on energy consumption are satisfied? Clearly, this problem is in NP,

since we can verify in polynomial time that a proposed schedule satisfies the

given restrictions and the bound on energy consumption. We will prove that200

finding an optimal schedule for the SEMRPP problem is NP-complete in the

strong sense via reduction from the 3-partition problem.

Consider an instance I1 of the 3-partition problem: Given a list A =

(a1, a2, . . . , a3m) of 3m positive integers such that
∑

aj = mB, is there a par-

tition of A into m subsets A1, A2, . . . , Am such that
∑

aj∈Ai
aj = B for each205
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1 ≤ i ≤ m [19, 20]? We construct an instance I2 of the SEMRPP problem as

follows: (1) there are m processors P = {Pi}, and smax is fast enough to ensure

a feasible schedule for the given tasks; (2) there are 3m tasks J = {Jj}, for

which the numbers of execution cycles wj are equal to aj and Mj = P for all

tasks Jj ; and (3) the deadline is C = 1 and the energy consumption is mBα.210

Suppose I1 has a solution; then the tasks {JJ : wj ∈ Ai} are assigned

to processor Pi. So, the energy consumption is
∑m

i=1(
∑

Jj:wj∈Ai
aj)α/1α−1 =

mBα. Thus I2 has a solution.

Suppose I2 has a solution, and we denote the numbers of execution cycles of

the processors by {h1, h2, . . . , hm}. According to (P1), the energy consumption215

is
∑m

i=1(hi)α/1α−1. By convexity, we have
∑m

i=1(hi)α = m
∑m

i=1(1/m)(hi)α ≥
m((1/m)

∑m
i=1hi)α = mBα. (Note that

∑m
i=1hi = mB.) The energy consump-

tion is equal to mBα if and only if h1 = h2 = . . . = hm = B. Thus I1 has a

solution.

So, we can conclude that SEMRPP in the continuous model is strongly NP-220

complete by this polynomial-time reduction from the 3-partition problem, which

has been proved NP-complete in the strong sense.

Lemma 3. There exists a polynomial-time approximation scheme (PTAS) for

the SEMRPP problem in the continuous model when Mj = P and smax is fast

enough.225

Proof. The proof is somewhat similar to that in [8], whose aim was to give a

PTAS for the problem of measuring the makespan under the condition of an

energy bound (Sm|energy|Cmax). Considering that Mj = P and the load of

each processor consists of a vector, it turns out that the SEMRPP problem is

equivalent to minimizing the lα norm1 of the loads [21]. This is concluded from230

the proof of Lemma 2; that is, if we denote the numbers of execution cycles of

the processors by {h1, h2, . . . , hm}, the energy consumption is
∑m

i=1(hi)α/Cα−1.

1For a positive number α ≥ 1, the lα norm of a vector x = (x1, x2, . . . , xn) is defined by

‖x‖ = (|x1|α + |x2|α + . . . + |xn|α)1/α.
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See the part referring to
∑m

i=1(hi)α and note that α is a constant power param-

eter. We then use the PTAS given in [21]; that is, for any ǫ > 0, we can find

the sum of the numbers of execution cycles of the tasks on the processors Pi235

(referred to below as the load) {L1, L2, . . . , Lm} in polynomial time such that

Σm
i=1(Li)α ≤ (1 + ǫ)Σm

i=1(OPTi)α, where Li is the load of scheduling and OPTi

is the optimal load for processor Pi.

Note that we have given detailed proofs of Lemmas 2 and 3 similar to those

stated in [7], but we have stated mainly the conditions that apply in a restricted240

environment (such as in the case of the set of restricted processors and the upper

speed smax that we discuss below in the paper).

4.2. Uniform Tasks

We now propose an optimal algorithm for a special case of the SEMRPP

problem in which all tasks have equal numbers of execution cycles (uniform)245

in the continuous model; we denote this algorithm as ECSEMRPP Algo. Note

that in Lemma 2, when we prove the complexity of the SEMRPP problem,

the tasks have arbitrary-size work. So it is not contradictory that we give the

polynomial-time algorithm for uniform tasks. Without loss of generality, we can

set wj = 1, ∀Jj and set C = C/wj . Given a set of tasks J , a set of processors P ,250

and sets of eligible processors for tasks {Mj}, we construct a network G = (V, E)

as follows: the vertex set of G is V = J ∪ P ∪ {s, t} (s and t correspond to a

virtual source and a virtual sink, respectively), and the edge set E of G consists

of three subsets: (1) (s, Pi) for all Pi ∈ P , (2) (Pi, Jj) for Pi ∈ Mj, and (3)

(Jj , t) for all Jj ∈ J . We set the capacity of the edges (Pi, Jj) and (Jj , t) to255

unity, and set (s, Pi) to have a capacity c (initially, we can set c = n). We define

L∗ = min{max {Li}} (i = 1, 2, . . . , m) as the minimum–maximum load, where

Li is the load of processor Pi; this can be obtained by means of Algorithm 1.

We constructed our algorithm ECSEMRPP Algo (see Algorithm 5) to find

the optimal schedule for the SEMRPP problem where the tasks have uniform260

size. There are four subprocedures in this algorithm, the main functions of

which are as follows:

12



Algorithm 1: Min Max Assign(G, n)
input : (G, n) /* n is the number of tasks */

output: The minimum–maximum load L∗ of Pi for all Pi ∈ P , and the

resulting configuration GH

1 begin

2 Let variable l = 1 and variable u = n;

3 while l 6= u do

4 Let capacity c = ⌊ 1
2 (l + u)⌋. Find the maximum flow in the

network G;

5 if The value of the maximum flow is exactly n, namely L∗ ≤ c,

then

6 set u = c and keep the configuration of maximum flow GH ;

7 else

8 The value of the maximum flow is less than n, namely L∗ > c,

set l = c + 1;

9 end

10 end

11 The optimal value is L∗ = l, return L∗ and GH ;

12 end

13



• Min Max Assign (see Algorithm 1). Find a “minimum–maximum load”

assignment and obtain the minimum–maximum load c∗.

• Pre Assign (see Algorithm 2). Find an assignment where the capacity of265

the edges (s, Pi) is a fixed integer. We set this to the minimum–maximum

load minus one, i.e., c∗ − 1.

• Find Candidate Critical (see Algorithm 3). Find the processors that have

the potential to be assigned one more task if the capacities of the edges

(s, Pi) are increased by one, i.e., from c∗ − 1 to c∗. We define these270

processors as candidate “actual maximum-load processors” in Definition

1. (We shall also refer to them as “candidate critical processors.”)

• Match (see Algorithm 4). Find the actual maximum-load processors from

the candidate critical processors, and find a matching between the actual

maximum-load processors and their tasks.275

Definition 1. Given that the capacity of the edges (s, Pi) is c∗ − 1 and given

an assignment resulting from this, we say that a processor is a candidate actual

maximum-load processor if its load is equal to c∗ − 1 and it has the potential

ability to be given unassigned tasks if the capacity of the edges (s, Pi) is c∗.

Lemma 4. The algorithm Min Max Assign solves the problem of minimiz-280

ing the maximum load of the processors for restricted parallel processors in

O(n3 log n) time if all tasks have equal numbers of execution cycles.

The proof follows mainly from consideration of the maximum flow as de-

scribed in [22]. In the Algorithm 1, we use a binary search to decide the

minimum–maximum load L∗ of Pi for all Pi ∈ P when the maximum flow285

is no less than n. As the range is [1, n], so there is log n steps. The computa-

tional complexity is then equal to the time O(n3) required to find the maximum

flow multiplied by log n steps, i.e., O(n3 log n).

Next, we show some properties of the result of the algorithm Find Candidate Critical

as follows.290
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Algorithm 2: Pre Assign(G, cfix)
input : (G, cfix)

output: An assignment GA of the fixed capacity cfix

1 begin

2 Set the capacity of the edges (s, Pi) to cfix, and run the

maximum-flow algorithm in the network G. Denote the configuration

of the result of the algorithm as GA;

3 Return GA.

4 end

Algorithm 3: Find Candidate Critical(G, GA, cfix)

input : (G, GA, cfix)

output: The set of candidate actual maximum-load processors PC , and

the set of unassigned tasks J C

1 begin

2 Compare the network G and the preliminary assignment GA, and

denote the rest of the unassigned tasks as J C . Find the set of

processors P1 to which the tasks in J C can be assigned;

3 Set P2 = ∅;
4 Set P ′

= P1;

5 Find the set of processors P ′′
to which the tasks currently assigned to

P ′
can be assigned, except for (P1 ∪ P2);

6 while P ′′ 6= ∅ do

7 P2 = P2 ∪ P ′′
;

8 Set P ′
= P ′′

;

9 Find the set of processors P ′′
to which the tasks currently

assigned to P ′
can be assigned, except for (P1 ∪ P2);

10 end

11 Return PC = P1 ∪ P2 and J C .

12 end

15



Lemma 5. The unassigned tasks J C (J C 6= ∅) can only be assigned to the set

of candidate actual maximum-load processors PC , which is defined in Definition

1. The load of each processor in PC is c∗ − 1.

Proof. According to the algorithm, P1 consists of all the processors that the

unassigned tasks J C can be assigned to. As P1 ⊆ PC , the unassigned tasks295

J C can only be assigned to the processors PC .

The load of each processor in P1 is c∗−1 because there are some unassigned

tasks that can be allocated to them. Suppose there is a processor Pe in P2

whose load is less than c∗ − 1. Then some tasks assigned to the processors in

P1 can be reassigned to Pe, so some of the unassigned tasks can be assigned to300

the processors in P1. This contradicts the fact that Algorithm 2 finds a stable

maximum-flow assignment. The assumption is wrong; we have the result that

the load of each processor in P2 is c∗ − 1. As PC = P1 ∪ P2, we conclude that

the load of each processor in PC is c∗ − 1.

Lemma 6. The algorithm Find Candidate Critical finds the set of candidate305

actual maximum-load processors PC , and its size is no less than the size of the

unassigned tasks J C , i.e., |PC | ≥ |J C |.

Proof. The correctness of finding PC follows from Definition 1 and the algorithm

Find Candidate Critical. Now we prove that |PC | ≥ |J C |. Suppose we have

|PC | < |J C |. According to Lemma 5, the number of tasks that have be assigned

to the processors PC is |PC | ∗ (c∗ − 1). Note that PC is the set of processors

to which the unassigned tasks and the tasks currently assigned to PC can be

assigned. The total number of tasks is |PC | ∗ (c∗ − 1) + |J C |. We have the

minimum–maximum load

|PC | ∗ (c∗ − 1) + |J C |
|PC | >

|PC | ∗ (c∗ − 1) + |PC |
|PC | = c∗,

which contradicts the fact that we can obtain the minimum–maximum load c∗

from Algorithm 1. Thus, the assumption |PC | < |J C | is wrong. So, we have

|PC | ≥ |J C |.310
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Algorithm 4: Match(G,PC ,J C , c∗)

input : (G,PC ,J C , c∗)

output: A matching GC = ({Pi}, {Ji}) of the actual maximum-load

processors and their tasks

1 begin

2 Find the processor nodes {Pi} in G that have a load c∗ and are in the

candidate critical processors PC to which unassigned tasks can be

assigned;

3 Return the resulting GC with the critical processors {Pi} and the sets

{Ji} of tasks that are loaded on them;

4 end

We now show a property of the result of the algorithm Match as follows.

Lemma 7. The algorithm Match finds the actual maximum-load processors

{Pi}, and the number of these processors is no more than the number of unas-

signed tasks |J C | when we set the capacity of the edges (s, Pi) to c∗ − 1.

Proof. First, we note that {Pi} is defined in the algorithm Match. From Lemma315

5, we know that the number of tasks on {Pi} is c∗− 1 when we set the capacity

of the edges (s, Pi) to c∗− 1. According to the pigeonhole principle, in order to

assign the number |PC |∗(c∗−1)+|JC | of tasks to the number |PC | of processors,

there must be no fewer than |{Pi}| processors to match the unassigned tasks.

So, {Pi} can be the set of actual maximum-load processors. |{Pi}| ≤ |J C |320

follows from the fact that there may be more than one unassigned task that can

only be assigned to some processors.

Finally, we prove that our algorithm ECSEMRPP Algo (see Algorithm 5)

solves the SEMRPP problem optimally for the case of uniform tasks by finding

the min–max load vector ~l, which is a strongly optimal assignment defined in325

[21, 23].

Definition 2. Given an assignment H, we denote by Sk the total load on the
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k most loaded of the processors. We say that an assignment is strongly optimal

if, for any other assignment H
′
(S

′
k corresponds accordingly to the total load on

the k most loaded of the processors) and for all 1 ≤ k ≤ m, we have Sk ≤ S
′
k.330

The correctness of ECSEMRPP Algo is established by the following theorem.

Theorem 1. The algorithm ECSEMRPP Algo finds the optimal schedule for

the SEMRPP problem in the continuous model in O(mn3 log n) time if all tasks

have equal numbers of execution cycles.

Proof. First, we prove that the assignment H returned by ECSEMRPP Algo335

is a strongly optimal assignment. We set H = {L1, L2, . . . , Lm}, where Li

corresponds to the loads of processors Pi in nonascending order. Suppose H
′

is another assignment such that H
′ 6= H and {L′

1, L
′
2, . . . , L

′
m} corresponds to

the load. According to the algorithm ECSEMRPP Algo, we know that H
′
can

only be an assignment in which Pi moves some tasks to Pj (j < i), because340

Pi cannot move a task to Pj′ (j
′

> i), otherwise it could lower the Li, which

is a contradiction to the algorithm ECSEMRPP Algo. We obtain Σi
k=1Li ≤

Σi
k=1L

′
i, i.e., H is a strongly optimal assignment by definition. It turns out

that there does not exist any assignment that can reduce the gaps between the

loads of the processors in the assignment H . Then the energy consumption of345

the assignment H ′ is no less than that of the assignment H as our objective

function is convex, so the optimal solution is obtained.

Every time, we discard at least one processor, so the total time cost is

m × O(n3 log n) = O(mn3 log n) according to Lemma 4, which completes the

proof.350

Note that in the above analysis, if the load of a processor is less than smin·C,

the processor runs at a speed smin. Another prerequisite is that max
m

{L1, . . . , Lm} ≤
smax·C; otherwise there is no feasible solution.

We use a simple example to illustrate the algorithm.

Example 1. Suppose there are m = 3 processors and n = 6 tasks. Given355

the sets of eligible processors for the tasks {Mj}, we construct the network
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Algorithm 5: ECSEMRPP Algo
input : The set of tasks J , the set of processors P , and the sets of

eligible processors for tasks {Mj}
output: Scheduling H of tasks on processors

1 begin

2 G(V, E) = Construct (J ,P , {Mj});
3 Let G0(V0, E0) = G(V, E), n0 = n, PH = ∅, JH = {φ1, . . . , φm};
4 begin

5 while G0 6= ∅ /*s, t seen as virtual nodes*/ do

6 begin

7 (c∗, G1st) = Min Max Assign(G0, n0);

8 c∗ = c∗ − 1;

9 G2ed = Pre Assign(G0, c
∗);

10 (PC ,J C) = Find Candidate Critical(

11 G0,G2ed,c∗);

12 G3rd = Match (G1st,PC ,J C);

13 /*According to the scheduling returned by G3rd, we note

the processors {PH
i } that have the actual maximum load

and denote their sets of tasks by {JH
i }. EH

i corresponds to

the related edges of {PH
i } and {JH

i }*/;

14 G0 = {V0 \ {PH
i } \ {JH

i }, E0\EH
i };

15 PH = PH ∪ {PH
i }, φi = JH

i , n0 = n0 −
∑

i |JH
i |;

16 end

17 end

18 end

19 Assign the tasks of JH
i to PH

i and set all the tasks assigned to the

processor PH
i to a speed (ΣJj∈JH

i
wj)/C. Return the final schedule H .

20 end
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G = (V, E) as shown in Fig. 1(a). In the first iteration, Algorithm 1 finds the

minimum-maximum load c∗ = 3. Suppose the assignment is JH
1 = {J1, J2, J3},

JH
2 = {J4, J5}, JH

3 = {J6}. So, in Algorithm 2, the input is cfix = c∗ − 1 = 2

and the maximum flow is 5. Suppose the assignment is JH
1 = {J1, J3}, JH

2 =360

{J4, J5}, JH
3 = {J6}. According to Algorithm 3, the unassigned tasks J2 can

be assigned to processor P1. Algorithm 4 returns the actual maximum-load of

processor P1 and the set of tasks {J1, J2, J3} assigned to it. So, in this iteration,

we fix JH
1 = {J1, J2, J3} and delete P1 and {J1, J2, J3}, as shown in Fig. 1(b).

In the second iteration, according to the same procedure, we can fix JH
2 =365

{J4, J5} and delete P2 and {J4, J5}, as shown in Fig. 1(c). In the last iteration,

we fix JH
3 = {J6} and delete P3 and {J6}, as shown in Fig. 1(d). After these

processes, the algorithm ECSEMRPP Algo finds the optimal scheduling in which

the sets of tasks {J1, J2, J3}, {J4, J5}, and {J6} are assigned to the processors

P1, P2, and P3, respectively.370

4.3. General Tasks

As the problem is NP-complete in the strong sense for general tasks (Lemma

2), we aim to obtain an approximation algorithm for the SEMRPP problem.

First, we relax the equality (3) of (P1) to

0 ≤ xij ≤ 1 ∀Jj , Pi ∈Mj . (5)

After this relaxation, the SEMRPP problem is transformed to a convex

program. The feasibility of this convex program can be checked in polynomial

time to within an additive error of ǫ (for an arbitrary constant ǫ > 0) [24], and

it can be solved optimally [18]. Suppose x∗ is an optimal solution to the relaxed375

SEMRPP problem. Now our goal is to convert this fractional assignment to an

integral one x̄. We adopt the method of dependent rounding introduced in [25].

We define a bipartite graph G(X∗) = (V, E), where the vertices of G are

V = J ∪ P , and e = (i, j) ∈ E if x∗ij > 0. The weight of edge (i, j) is x∗ijwj .

The rounding iteratively modifies x∗ij such that at the end x∗ij becomes integral.380

There are two main steps, as follows:
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Figure 1: The process of the algorithm ECSEMRPP Algo. (a) Initial network. (b) First

round of finding the maximum load. (c) Second round of finding the maximum load. (d)

Third round of finding the maximum load.
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1. Break cycle:

(a) While (G(x∗) has cycle C = (e1, e2, . . . , e2l−1, e2l))

i. Set C1 = (e1, e3, . . . , e2l−1) and C2 = (e2, e4, . . . , e2l);

Find minimum-weight edge of C, denoted as eC
min, and its385

weight ǫ = mine∈C1||e∈C2e;

ii. If eC
min ∈ C1, then for every edge in C1 subtract ǫ and for every

edge in C2 add ǫ;

iii. Else for every edge in C1 add ǫ and for every edge in C2

subtract ǫ;390

iv. Remove the edges with weight 0 from G.

2. Fractional rounding tasks:

(a) In the first rounding phase, consider each integral assignment if

x∗ij = 1, set x̄ij = 1, and discard the corresponding edge from the

graph. Denote the resulting graph by G again;395

(b) While (G(x∗) has connected component C)

i. Choose one task node from C as root to construct a tree Tr,

and match each task node with any one of its children. The

resulting matching covers all task nodes;

ii. Match each task to one of its child nodes (a processor) such400

that Pi = argminPi∈PΣx̄ij=1x̄ijwj , set x̄ij = 1, and x̄ij = 0 for

other child nodes.

Lemma 8. The procedure of relaxation and dependent rounding finds a 2α-

approximation to the optimal schedule for the SEMRPP problem in the contin-

uous model in polynomial time.405

Proof. This can be obtained simply from the discussion in [23].

We improve this result by analyzing the SEMRPP problem carefully, by

generalizing Lemma 8.

Theorem 2. (i) The procedure of relaxation and dependent rounding finds a

2α−1(2−1/pα)-approximation to the optimal schedule for the SEMRPP problem410
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in the continuous model in polynomial time, where p = maxMj |Mj | ≤ m. (ii)

For any processor Pi, we have ΣJ x̄ijwj < ΣJ x∗ijwj + maxJ :x∗
ij∈(0,1) wj , where

x∗ij is the fractional task assignment at the beginning of the second phase (i.e.,

the linear constraints on the maximum number of execution cycles are violated

only by maxJ :x∗
ij∈(0,1) wj).415

Proof. (i) Denote the optimal solution to the SEMRPP problem by OPT , de-

note by H∗ the fractional schedule obtained after breaking all cycles, and denote

by H̄ the schedule returned by the algorithm. Moreover, denote by H1 the sched-

ule consisting of the tasks assigned in the first step, i.e., x∗ij = 1 immediately

after breaking the cycles, and denote by H2 the schedule consisting of the tasks

assigned in the second rounding step, i.e., set x̄ij = 1 in the matching process.

We have ‖H1‖α ≤ ‖H∗‖α ≤ ‖OPT ‖α,2 where the first inequality follows from

the fact that H1 is a subschedule of H∗ and the second inequality results from

H∗ being a fractional optimal schedule compared with OPT , which is an in-

tegral schedule. We consider ‖H1‖α ≤ ‖H∗‖α carefully. If ‖H1‖α = ‖H∗‖α,

that is, all tasks have been assigned in the first step and the second rounding

step is not necessary, then we have ‖H1‖α = ‖H∗‖α = ‖OPT ‖α, such that

the approximation is 1. Next we consider ‖H1‖α < ‖H∗‖α, so that there are

some tasks assigned in the second rounding step; without loss of generality, we

denote these as J1 = {J1, . . . , Jk}. We assume that the fraction of task Jj

assigned to processor Pi is fij and the largest size of the eligible processor set

2In the schedule H1, when the loads of m processors are {lh1
1 , lh1

2 , . . . , lh1
m }, ‖H1‖α means

((lh1
1 )α + (lh1

2 )α + . . . + (lh1
m )α)1/α.
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is p = maxMj |Mj | ≤ m. Then we have

(‖H∗‖α)α =
m∑

i=1

(ΣJj :x∗
ij=1wj + ΣJj∈J1fij)α

≥
m∑

i=1

(ΣJj :x∗
ij=1wj)α +

m∑

i=1

(ΣJj∈J1fij)α

= (‖H1‖α)α +
m∑

i=1

(ΣJj∈J1fij)α

≥ (‖H1‖α)α +
m∑

i=1

k∑

j=1

(fij)α

= (‖H1‖α)α +
k∑

j=1

m∑

i=1

(fij)α

≥ (‖H1‖α)α +
k∑

j=1

(∑m
i=1 fij

p

)α

= (‖H1‖α)α +
1
pα

k∑

j=1

(wj)α,

(6)

where fij is the fraction of task Jj assigned to processor Pi. From the fact that

H2 schedules only one task per processor, this is the optimal integral assignment

for the subset of tasks that it assigns, and it certainly has a cost smaller than

any integral assignment for the whole set of tasks. In a similar way, we have

(‖H2‖α)α =
k∑

j=1

(wj)α ≤ (‖OPT ‖α)α. (7)

So, the inequality (6) can be reduced to

(‖H∗‖α)α ≥ (‖H1‖α)α +
1
pα

(‖H2‖α)α, (8)
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and then

(‖H̄‖α)α = (‖H1 + H2‖α)α ≤ (‖H1‖α + ‖H2‖α)α

= 2α

(‖H1‖α + ‖H2‖α

2

)α

≤ 2α

(
1
2
(‖H1‖α)α +

1
2
(‖H2‖α)α

)

≤ 2α−1((‖H∗‖α)α − 1
pα

(‖H2‖α)α + (‖H2‖α)α)

≤ 2α−1

(
2− 1

pα

)
(‖OPT ‖α)α.

So,
(‖H̄‖α)α

(‖OPT ‖α)α
≤ 2α−1

(
2− 1

pα

)
.

This concludes the proof that the schedule H̄ guarantees a 2α−1(2 − 1/pα)-

approximation to the optimal solution for the SEMRPP problem and can be

found in polynomial time.

(ii) From the above, we also have

ΣJj∈J x̄ijwj < ΣJj∈J x∗ijwj + maxJj∈J :x∗
ij∈(0,1) wj , ∀Pi,

where the inequality results from the fact that the load of processor Pi in sched-

ule H̄ is the load of H∗ plus the weight of the tasks matched to it. Because we420

match each task to one of its child nodes, we find that the number of execution

cycles of the added task satisfies the inequality w̄j < maxJj∈J :x∗
ij∈(0,1) wj .

Now we discuss smax. First, we present a claim about the relationship be-

tween feasibility and violation.

Claim 1. If (P1) (the SEMRPP problem in the continuous model) has a feasible425

solution, it is hard to solve (P1) without violating the constraint of the limitation

on the maximum number of execution cycles of the processors.

Obviously, if (P1) has a unique feasible solution, the maximum number of

execution cycles of the processors is set to the value given by the solution OPT .

Then, if we can always solve (P1) without violating the constraint, this means430
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that we can easily devise an exact algorithm for (P1). But we have proof that

(P1) is NP-complete in the strong sense.

Next, we give a guarantee speed which can be regarded as fast enough in

the procedure of dependent rounding.

Lemma 9. The procedure of dependent rounding can provide an approximate435

solution without violating the constraint on the maximum number of execution

cycles of the processors when smaxC ≥ maxPi∈P Li + maxJj∈J wj, where Li =

ΣJj∈Ji(1/|Mj|)wj , and Ji is the set of tasks that can be assigned to processor

Pi.

Proof. First, we define a vector ~H = {H1, H2, . . . , Hm}, in nonascending sorted

order, as the numbers of execution cycles of m processors at the beginning of

the second step. We also define a vector ~L = {L1, L2, . . . , Lm}, in nonascending

sorted order, as the numbers of execution cycles of m processors such that

Li = ΣJj∈Ji(1/|Mj|)wj . Now we need to prove that H1 ≤ L1. Suppose we

have H1 > L1; without loss of generality, we assume that the processor P1 has

a number of execution cycles H1. We denote the set of tasks assigned to P1 by

JH
1 . Let MH

1 be the set of processors to which a task, currently fractionally or

integrally assigned to processor P1, can be assigned, i.e., MH
1 =

⋃
Jj∈JH

1
Mj .

Similarly, we denote the set of tasks that can be processed on MH
1 by JH ,

and the set of processors MH for every task in Pi ∈ MH
1 can be assigned. We

have MH =
⋃

Jj∈JH Mj. Without loss of generality, we define MH as a set

{h1, h2, . . . , hk} (1 ≤ k ≤ m) and also define a set {l1, l2, . . . , lk} (1 ≤ k ≤ m) as

its respective set of processors in ~L. According to the convexity of the objective

function, we obtain Hh1 = Hh2 = . . . = Hhk
. By our assumption, Hhp > Llq ,

∀p, ∀q. Then

ΣpHhp > ΣqLlq . (9)

Note that each integral task (at the beginning of the second step) in the left part

of inequality (9) can also have its respective integral task in the right part, but

the right part may contain some fractional tasks. So, ΣqLlq − ΣpHhp ≥ 0, i.e.,

ΣpHhp ≤ ΣqLlq , a contradiction to inequality (9). The assumption is wrong;

26



we have H1 ≤ L1. By Theorem 2, where the maximum number of execution

cycles for the dependent rounding is H̄max, we have

H̄max < H1 + maxJj∈J :x∗
ij∈(0,1) wj

≤ L1 + maxJj∈J :x∗
ij∈(0,1) wj

≤ L1 + maxJj∈J wj = maxi Li + maxJj∈J wj .

This completes the proof.440

5. Numerical Results

In this section, we provide performance details based on numerical results.

To demonstrate the effectiveness of our approach, we compared five values of

interest, namely the optimal fractional solution, the optimal integral solution,

the fractional-dependent-rounding (FDR) integral solution (in the rest of the445

paper, this refers to the solution obtained by our algorithm), the least-flexible-

task (least flexible job, LFJ) solution, and the least-flexible-processor (least

flexible machine, LFM) solution. We used the CPLEX solver [26] to obtain the

optimal integral solution by solving the relevant integer programming problem.

For our approximation algorithm, we obtained the optimal fractional solution450

by use of the CVX solver [27], and then applied dependent rounding by means

of our algorithm. The LFJ and LFM solutions were obtained by the following

LFJ and LFM algorithms:

• LFJ algorithm. The tasks are first sorted in nondecreasing order of the

cardinality of their eligible processing sets, i.e., by |Mj |. All the tasks are455

then scheduled in this order by sequential list. Next, each task is assigned

to a processor Pi which has the least load and is in that task’s eligible

processing set (Pi ∈ Mj). Finally, the speed of each processor is set to a

value such that the processor finishes its load in accordance with the time

constraint.460

• LFM algorithm. The processors are first sorted in nondecreasing order of

the cardinality of their sets of eligible processing tasks. The processors
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are then scheduled in this order by sequential list. Next, each processor

chooses a task which can be assigned to it and has not been assigned

to another processor. Finally, the speed of each processor is set to a465

value such that the processor finishes its load in accordance with the time

constraint. Note that the main difference between the LFJ and LFM

algorithms is between whether tasks or processors are the objects used to

select the other party (processors or tasks, respectively).

5.1. Simulation Setting470

To evaluate the performance of our algorithm, we created systems consisting

of 10–50 processors and 50–300 tasks. Each task Jj was characterized by two

parameters: the number of execution cycles wj and the eligible processing set

Mj; wj was randomly generated in the range [1, 10 000]. We simulated two cases

for Mj : one was randomly generated from the set P of processors, and the other475

was arranged to conform to the restriction of inclusive processing sets [11].3 The

maximum speed smax was set to a value large enough to allow a feasible solution

to be obtained. We analyzed four different cases, where we varied the tightness

of the time constraint C, used two different power parameters α, varied the ratio

η of the number of tasks to the number of processors, and used two different480

eligible processing sets. Without loss of generality, we set the power parameter

α to 2 when studying the other cases. All of the results presented are mean

values from several different runs on an Intel Core I5-2400 CPU with a speed of

3.10GHz × 4.

5.2. Simulation Results485

Figure 2(a) represents the energy consumption of a system with 10 processors

and 27 tasks when the time constraint is increased. The five curves correspond

to the values of the five solutions mentioned at the beginning of this section.

3“Inclusive processing sets” means that for a pair of restricted processing sets Mj and Mk

for any two different tasks, either Mj ⊆Mk or Mk ⊆Mj .
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Figure 2(b) reports the relative energy consumption ratios for these five values,

where all of them have been normalized by the optimal integral solution. Some490

observations from this simulation are as follows. (1) As shown in Figure 2(a) and

(b), the energy consumption and the time constraint are in inverse proportion,

and the ratios are almost not influenced by the different time constraints. This

confirms Lemma 1 and Corollary 1, i.e., each processor executes all tasks that

are assigned to it at a uniform speed. So, when the time constraint C is increased495

to k×C, each processor can lower its speed to s/k to finish the tasks. For α = 2,

the energy consumption is equal to (1/k) times the energy consumption when

the time constraint is not increased (i.e., k × C × (s/k)2 = (1/k)(Cs2)). Thus

each kind of energy consumption is influenced in the same proportion by varia-

tion of the time constraint; when the energy consumption is normalized by the500

optimal integral solution, the time constraint can be removed. (2) The optimal

fractional solutions are little different from the integral optimal solutions: the

gap is within 5% in the simulations. A similar difference can also be observed

between the integral optimal solution and the fractional-dependent-rounding in-

tegral solution; in fact, this difference is also about 5% in the simulations. This505

suggests that the FDR solution performs much better than the approximation

ratio that we analyzed in Theorem 2. (3) The figure confirms the superiority of

the fractional-dependent-rounding integral solution, as this solution can reach

values 11% and 15% better than the LFJ and LFM solutions, respectively. Af-

ter checking the load of the processor with the maximum load, we found that510

the fractional-dependent-rounding solution was close to the integral optimal so-

lution. This suggests that the fractional-dependent-rounding integral solution

can balance the load between the eligible processing sets more efficiently.

Figure 3 illustrates the normalized energy consumption ratios for two dif-

ferent power parameters. As can be seen from the figure, when the power515

parameter α increases, our solution becomes more competitive. More precisely,

the saving in energy consumption changes from 11% at α = 2 to 31% at α = 3

compared with the LFJ solution, and from 15% at α = 2 to 40% at α = 3

compared with the LFM solution. This is because a larger power parameter
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Figure 2: Performance of five solutions with different time constraints. (a) Energy consump-

tion. (b) Energy consumption ratio normalized by the optimal integral solution.

amplifies an improper allocation between processors and tasks.520
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Figure 3: Energy consumption ratio normalized by the FDR solution for two power parameters

α. (Frac Opt = fractional optimal; Int Opt = integral optimal.)

Figure 4 depicts the normalized energy consumption ratios for different solu-

tions with a varying ratio η of the number of tasks to the number of processors.

When the ratio η is small, the difference between the normalized ratios is much

larger. This can be explained by the fact that if only one task was improperly

assigned, the energy consumption would oscillate excessively if η was small. As η525

is increased, the oscillation will be reduced because an improper task assignment

will not influence the result very much.

Figure 5 illustrates the normalized energy consumption ratios of a system
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Figure 4: Energy consumption ratio normalized by the optimal integral solution for varying

ratio η. (The value of the optimal integral solution is missing for the last point because it

could not be obtained, owing to problems with both memory and running time. The last

points for the other values are normalized by the optimal fractional solution.)

with 14 processors and 35 tasks for two eligible processing sets. As shown in

the figure, the different eligible processor sets can influence the performance of530

the algorithms. The FDR and LFJ solutions perform better in the case of a

random processor set. This can be explained by the fact that in the LFJ solution

and the FDR solution (in the last stage, when fractional tasks for processors are

rounded) the tasks choose their processors, and the random restrictions help the

tasks make the proper choice, but the difference is not so obvious. In contrast,535

the LFM solution, in which the processors choose their tasks, performs much

better in the case of inclusive processing sets. This can be explained by the

fact that the processor which has the smallest number of eligible tasks selects a

task first; if it makes an improper choice, the subsequent processors will not be

influenced much, as they have more tasks to choose from in the case of inclusive540

processing sets. It is interesting to observe that the algorithms perform very

differently under random and regular conditions.

The average running times for the optimal fractional solution obtained by

CVX, the fractional-dependent-rounding integral solution obtained by CVX and
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Figure 5: Energy consumption ratio normalized by the optimal integral solution for two eligible

processing sets. (Frac Opt = fractional optimal; Int Opt = integral optimal.)

rounding, the LFJ solution obtained by the LFJ algorithm, and the LFM solu-545

tion obtained by the LFM algorithm were short (in our simulations, they took

at most several minutes) in all the instances presented here. However, obtain-

ing the optimal integral solution by CPLEX took more than one day for large

systems. For larger systems, the optimal integral solution had problems with

both memory and running time. Note that in all of the simulations, the FDR550

solution was more efficient than the LFJ and LFM solutions. This suggests

that our solution could assign tasks more appropriately in every instance, and

be able to solve the SEMRPP problem efficiently owing to the high quality of

the solutions and low computational time.

6. Conclusion555

In this paper, we have explored algorithmic instruments aimed at reducing

energy consumption with restricted parallel processors. We aimed to minimize

the total energy consumption, and the speed scaling method was used to save en-

ergy under an execution time constraint. We first assessed the complexity of the

scheduling problem given a time constraint and the setting of restricted parallel560
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processors. Specially, for the case where the tasks have a uniform size, we have

proposed an optimal scheduling algorithm with time complexity O(mn3 log n).

We then presented a polynomial-time approximation algorithm with an approx-

imation factor 2α−1(2− 1/pα) (where p = maxMj |Mj |) for the general case in

which the tasks have an arbitrary size measured in execution cycles. We eval-565

uated the performance of the approximation algorithm by a set of simulations

after analysis of the algorithm. It turns out that our solution is closer than

other solutions to the optimal solution. This confirms that our algorithm could

provide more efficient scheduling for the SEMRPP problem.
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HIGHLIGHTS:

We propose an optimal scheduling algorithm for the case when all of the tasks have uniform computational work.
We present a polynomial-time algorithm that achieves a bounded approximation factor when the tasks have arbitrary-
size work.
We evaluate the performance of the approximation algorithm by a set of simulations.


