
Power-Efficient Assignment of Virtual
Machines to Physical Machines

Jordi Arjona Aroca1, Antonio Fernández Anta2, Miguel A. Mosteiro3(B),
Christopher Thraves4, and Lin Wang5

1 Universidad Carlos III de Madrid, Madrid, Spain
jorge.arjona@imdea.org

2 Institute IMDEA Networks, Madrid, Spain
antonio.fernandez@imdea.org

3 Department of Computer Science, Kean University, Union, NJ, USA
mmosteir@kean.edu

4 CNRS-LAAS and University of Toulouse - LAAS, Tolouse, France
cthraves@laas.fr

5 Institute of Computing Technology, Chinese Academy of Sciences and
University of Chinese Academy of Sciences, Beijing, China

wanglin@ict.ac.cn

Abstract. Motivated by current trends in cloud computing, we study
a version of the generalized assignment problem where a set of virtual
processors has to be implemented by a set of identical processors. For
literature consistency, we say that a set of virtual machines (VMs) is
assigned to a set of physical machines (PMs). The optimization criteria
is to minimize the power consumed by all the PMs. We term the problem
Virtual Machine Assignment (VMA). Crucial differences with previous
work include a variable number of PMs, that each VM must be assigned
to exactly one PM (i.e., VMs cannot be implemented fractionally), and
a minimum power consumption for each active PM. Such infrastructure
may be strictly constrained in the number of PMs or in the PMs’ capacity,
depending on how costly (in terms of power consumption) it is to add
a new PM to the system or to heavily load some of the existing PMs.
Low usage or ample budget yields models where PM capacity and/or the
number of PMs may be assumed unbounded for all practical purposes.
We study four VMA problems depending on whether the capacity or
the number of PMs is bounded or not. Specifically, we study hardness
and online competitiveness for a variety of cases. To the best of our
knowledge, this is the first comprehensive study of the VMA problem for
this cost function.

Keywords: Cloud computing · Generalized assignment · Scheduling ·
Load balancing · Power efficiency

This work has been supported in part by the Comunidad de Madrid grant
Cloud4BigData-CM, the MINECO grant TEC2011-29688-C02-01, the National Nat-
ural Science Foundation of China grant 61020106002, the National Science Founda-
tion (CCF-0937829, CCF-1114930), and Kean University UFRI grant.

c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 71–88, 2014.
DOI: 10.1007/978-3-319-13464-2 6

72 J. Arjona Aroca et al.

1 Introduction

The current pace of technology developments, and the continuous change in busi-
ness requirements, may rapidly yield a given proprietary computational platform
obsolete, oversized, or insufficient. Thus, outsourcing has recently become a pop-
ular approach to obtain computational services without incurring in amortization
costs. Furthermore, in order to attain flexibility, such service is usually virtual-
ized, so that the user may tune the computational platform to its particular
needs. Users of such service need not to be aware of the particular implementa-
tion, they only need to specify the virtual machine they want to use. This con-
ceptual approach to outsourced computing has been termed cloud computing, in
reference to the cloud symbol used as an abstraction of a complex infrastruc-
ture in system diagrams. Current examples of cloud computing providers include
Amazon Web Services [3], Rackspace [34], and Citrix [17].

Depending on what the specific service provided is, the cloud computing model
comes in different flavors, such as infrastructure as a service, platform as a service,
storage as a service, etc. In each of these models, the user may choose specific para-
meters of the computational resources provided. For instance, processing power,
memory size, communication bandwidth, etc. Thus, in a cloud-computing service
platform, various virtualmachines (VM) with user-defined specifications must
be implemented by, or assigned to1, various physical machines (PM)2. Fur-
thermore, such a platform must be scalable, allowing to add more PMs, should
the business growth require such expansion. In this work, we call this problem the
Virtual Machine Assignment (VMA) problem.

The optimization criteria for VMA depends on what the particular objective
function sought is. From the previous discussion, it can be seen that, underlying
VMA, there is some form of bin-packing problem. However, in VMA the number
of PMs (i.e., bins for bin packing) may be increased if needed. Since CPU is gen-
erally the dominant power consumer in a server [7], VMA is usually carried out
according to CPU workloads. With only the static power consumption of servers
considered, previous work related to VMA has focused on minimizing the num-
ber of active PMs (cf. [11] and the references therein) in order to minimize the
total static energy consumption. This is commonly known as VM consolidation
[26,32]. However, despite the static power, the dynamic power consumption of
a server, which has been shown to be superlinear on the load of a given com-
putational resource [9,23], is also significant and cannot be ignored. Since the
definition of load is not precise, we borrow the definition in [7] and define the load
of a server as the amount of active cycles per second a task requires, an absolute
metric independent of the operating frequency or the number of cores of a PM.
The superlinearity property of the dynamic power consumption is also confirmed
1 The cloud-computing literature uses instead the term placement. We choose here the

term assignment for consistency with the literature on general assignment problems.
2 We choose the notation VM and PM for simplicity and consistency, but notice that

our study applies to any computational resource assignment problem, as long as the
minimization function is the one modeled here.

Power-Efficient Assignment of Virtual Machines 73

by the results in [7]. As a result, when taking into account both parts of power
consumption, the use of extra PMs may be more efficient energy-wise than a
minimum number of heavily-loaded PMs. This inconsistency with the literature
in VM consolidation has been supported by the results presented in [7] and,
hence, we claim that the way consolidation has been traditionally performed has
to be reconsidered. In this work, we combine both power-consumption factors
and explore the most energy-efficient way for VMA. That is, for some parame-
ters α > 1 and b > 0, we seek to minimize the sum of the α powers of the PMs
loads plus the fixed cost b of using each PM.

Physical resources are physically constrained. A PMs infrastructure may be
strictly constrained in the number of PMs or in the PMs CPU capacity. However,
if usage patterns indicate that the PMs will always be loaded well below their
capacity, it may be assumed that the capacity is unlimited. Likewise, if the
power budget is very big, the number of PMs may be assumed unconstrained
for all practical purposes. These cases yield 4 VMA subproblems, depending on
whether the capacity and the number of PMs is limited or not. We introduce
these parameters denoting the problem as (C,m)-VMA, where C is the PM
CPU capacity, m is the maximum number of PMs, and each of these parameters
is replaced by a dot if unbounded.

In this work, we study the hardness and online competitiveness of the VMA
problem. Specifically, we show that VMA is NP-hard in the strong sense (in par-
ticular, we observe that (C,m)-VMA is strongly NP-complete). Thus, VMA
problems do not have a fully polynomial time approximation scheme (FPTAS).
Nevertheless, using previous results derived for more general objective functions,
we notice that (·,m)- and (·, ·)-VMA have a polynomial time approximation
scheme (PTAS). We also show various lower and upper bounds on the offline
approximation and the online competitiveness of VMA. Rather than attempting
to obtain tight bounds for particular instances of the parameters of the prob-
lem (C,m,α, b) we focus on obtaining general bounds, whose parameters can be
instantiated for the specific application. The bounds obtained show interesting
trade-offs between the PM capacity and the fixed cost of adding a new PM to
the system. To the best of our knowledge, this is the first VMA study that is
focused on power consumption.

Roadmap. The paper is organized as follows. In what remains of this section,
we define formally the (·, ·)-VMA problem, we overview the related work, and
we describe our results in detail. Section 2 includes some preliminary results that
will be used throughout the paper. The offline and online analyses are included in
Sects. 3 and 4 respectively. Section 5 discusses some practical issues and provides
some useful insights regarding real implementation. For succinctness, many of
the proofs are left to the full version of this paper in [8].

1.1 Problem Definition

We describe the (·, ·)-VMA problem now. Given a set S = {s1, . . . , sm} of m > 1
identical physical machines (PMs) of capacity C; rational numbers μ, α and b,
where μ > 0, α > 1 and b > 0; a set D = {d1, . . . , dn} of n virtual machines and

74 J. Arjona Aroca et al.

a function � : D → R that gives the CPU load each virtual machine incurs3, we
aim to obtain a partition π = {A1, . . . , Am} of D, such that �(Ai) ≤ C, for all
i. Our objective will be then minimizing the power consumption given by the
function

P (π) =
∑

i∈[1,m]:Ai �=∅

(
μ
(∑

dj∈Ai

�(dj)
)α

+ b

)
. (1)

Let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) = μxα+b
otherwise. Then, the objective function is to minimize P (π) =

∑m
i=1 f(�(Ai)).

The parameter μ is used for consistency with the literature. For clarity we will
consider μ = 1 in the rest of the paper. All the results presented apply for other
values of μ.

We also study several special cases of the VMA problem, namely (C,m)-
VMA, (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA. (C,m)-VMA refers to the case
where both the number of available PMs and its capacity are fixed. (·, ·)-VMA,
where (·) denotes unboundedness, refers to the case where both the number of
available PMs and its capacity are unbounded (i.e., C is larger than the total
load of the VMs that can ever be in the system at any time, or m is larger than
the number of VMs that can ever be in the system at any time). (C, ·)-VMA and
(·,m)-VMA are the cases where the number of available PMs and their capacity
is unbounded, respectively.

1.2 Related Work

To the best of our knowledge, previous work on VMA has been only experimen-
tal [16,27,30,36] or has focused on different cost functions [1,11,15,18]. First, we
provide an overview of previous theoretical work for related assignment prob-
lems (storage allocation, scheduling, network design, etc.). The cost functions
considered in that work resemble or generalize the power cost function under
consideration here. Secondly, we overview related experimental work.

Chandra and Wong [15], and Cody and Coffman [18] study a problem for
storage allocation that is a variant of (·,m)-VMA with b = 0 and α = 2. Hence,
this problem tries to minimize the sum of the squares of the machine-load vector
for a fixed number of machines. They study the offline version of the problem
and provide algorithms with constant approximation ratio. A significant leap
was taken by Alon et al. [1], since they present a PTAS for the problem of
minimizing the Lp norm of the load vector, for any p ≥ 1. This problem has the
previous one as special case, and is also a variant of the (·,m)-VMA problem
when p = α and b = 0. Similarly, Alon et al. [2] extended this work for a more
general set of functions, that include f(·) as defined above. Hence, their results
can be directly applied in the (·,m)-VMA problem. Later, Epstein et al. [20]
extended [2] further for the uniformly related machines case. We will use these
results in Sect. 3 in the analysis of the offline case of (·,m)-VMA and (·, ·)-VMA.

3 For convenience, we overload the function �(·) to be applied over sets of virtual
machines, so that for any set A ⊆ D, �(A) =

∑
dj∈A �(dj).

Power-Efficient Assignment of Virtual Machines 75

Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scaling
in job scheduling [9]. The problem is to schedule the execution of n computational
jobs on a single processor, whose speed may vary within a countable collection
of intervals. Each job has a release time, a processing work to be done, a weight
characterizing its importance, and its execution can be suspended and restarted
later without penalty. A scheduler algorithm must specify, for each time, a job to
execute and a speed for the processor. The goal is to minimize the weighted sum
of the flow times over all jobs plus the energy consumption, where the flow time of
a job is the time elapsed from release to completion and the energy consumption
is given by sα where s is the processor speed and α > 1 is some constant. For
the online algorithm shortest remaining processing time first, the authors prove
a (3 + ε) competitive ratio for the objective of total weighted flow plus energy.
Whereas for the online algorithm highest density first (HDF), where the density
of a job is its weight-to-work ratio, they prove a (2 + ε) competitive ratio for the
objective of fractional weighted flow plus energy.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost
functions of the flow time, with the only restriction that such function is non-
decreasing [24]. In their model, a collection of jobs, each characterized by a release
time, a processing work, and a weight, must be processed by a single server whose
speed is variable. A job can be suspended and restarted later without penalty.
The authors show that HDF is (2+ε)-speed O(1)-competitive against the optimal
algorithm on a unit speed-processor, for all non-decreasing cost functions of
the flow time. Furthermore, they also show that this ratio cannot be improved
significantly proving impossibility results if the cost function is not uniform
among jobs or the speed cannot be significantly increased.

A generalization of the above problem is studied by Gupta, Krishnaswamy,
and Pruhs in [23]. The question addressed is how to assign jobs, possibly frac-
tionally, to unrelated parallel machines in an online fashion in order to minimize
the sum of the α-powers of the machine loads plus the assignment costs. Upon
arrival of a job, the algorithm learns the increase on the load and the cost of
assigning a unit of such job to a machine. Jobs cannot be suspended and/or
reassigned. The authors model a greedy algorithm that assigns a job so that the
cost is minimized as solving a mathematical program with constraints arriving
online. They show a competitive ratio of αα with respect to the solution of the
dual program which is a lower bound for the optimal. They also show how to
adapt the algorithm to integral assignments with a O(α)α competitive ratio,
which applies directly to our (·,m)-VMA problem. References to previous work
on the particular case of minimizing energy with deadlines can be found in this
paper.

Similar cost functions have been considered for the minimum cost network-
design problem. In this problem, packets have to be routed through a (possibly
multihop) network of speed scalable routers. There is a cost associated to assign-
ing a packet to a link and to the speed or load of the router. The goal is to route
all packets minimizing the aggregated cost. In [4,5] the authors show offline algo-
rithms for this problem with undirected graph and homogeneous link cost func-
tions that achieve polynomial and poly-logarithmic approximation, respectively.

76 J. Arjona Aroca et al.

The cost function is the α-th power of the link load plus a link assignment
cost, for any constant α > 1. The same problem and cost function is stud-
ied in [23]. Bansal et al. [10] study a minimum-cost virtual circuit multicast
routing problem with speed scalable links. They give a polynomial-time O(α)-
approximation offline algorithm and a polylog-competitive online algorithm,
both for the case with homogeneous power functions. They also show that the
problem is APX-hard in the case with heterogeneous power functions and there
is no polylog-approximation when the graph is directed. Recently, Antoniadis
et al. [6] improved the results by providing a simple combinatorial algorithm
that is O(logα n)-approximate, from which we can construct an Õ(log3α+1 n)-
competitive online algorithm. The (·,m)-VMA problem can be seen as a especial
case of the problem considered in these papers in which there are only two nodes,
source and destination, and m parallel links connecting them.

To the best of our knowledge, the problem of minimizing the power con-
sumption (given in Eq. 1) with capacity constraints (i.e., the (C,m)-VMA and
(C, ·)-VMA problems) has received very limited attention, in the realm of both
VMA and network design, although the approaches in [5,10] are related to or
based on the solutions for the capacitated network-design problem [14].

The experimental work related to VMA is vast and its detailed overview is out
of the scope of this paper. Some of this work does not minimize energy [13,28,31]
or it applies to a model different than ours (VM migration [33,35], knowl-
edge of future load [29,35], feasibility of allocation [11], multilevel architec-
ture [25,30,33], interconnected VMs [12], etc.). On the other hand, some of the
experimental work where minimization of energy is evaluated focus on a more
restrictive cost function [25,38,40].

In [35], the authors focus on an energy-efficient VM placement problem with
two requirements: CPU and disk. These requirements are assumed to change
dynamically and the goal is to consolidate loads among servers, possibly using
migration at no cost. In our model VMs assignment is based on a CPU require-
ment that does not change and migration is not allowed. Should any other
resource be the dominating energy cost, the same results apply for that require-
ment. Also, if loads change and migration is free, an offline algorithm can be
used each time that a load changes or a new VM arrives. In [35] it is shown
experimentally that energy-efficient VMA does not merely reduce to a packing
problem. That is, to minimize the number of PMs used even if their load is close
to their maximum capacity. For our model, we show here that the optimal load
of a given server is a function only of the fixed cost of being active (b) and the
exponential rate of power increase on the load (α). That is, the optimal load is
not related to the maximum capacity of a PM.

1.3 Our Results

In this work, we study offline and online versions of the four versions of the
VMA problem. For the offline problems, the first fact we observe is that there
is a hard decision version of (C,m)-VMA: Is there a feasible partition π of the

Power-Efficient Assignment of Virtual Machines 77

set D of VMs? By reduction from the 3-Partition problem, it can be shown that
this decision problem is strongly NP-complete.

We then show that the (·, ·)-VMA, (C, ·)-VMA, and (·,m)-VMA problems are
NP-hard in the strong sense, even if α is constant. This result implies that these
problems do not have FPTAS, even if α is constant. However, we show that the
(·, ·)-VMA and (·,m)-VMA problems have PTAS, while the (C, ·)-VMA problem
can not be approximated beyond a ratio of 3

2 · α−1+(2
3)

α

α (unless P = NP). On the
positive side, we show how to use an existing Asymptotic PTAS [21] to obtain
algorithms that approximate the optimal solution of (C, ·)-VMA. (See Table 1.)

Then we move on to online VMA algorithms. We show various upper and
lower bounds on the competitive ratio of the four versions of the problem. (See
Table 1.) Observe that the results are often different depending on whether x∗ is
smaller than C or not. In fact, when x∗ < C, there is a lower bound of (3/2)2α−1

2α−1

Table 1. Summary of bounds on the approximation/competitive ratio ρ. All lower
bounds are existential. The number of PMs in an optimal (C, ·)-VMA solution is
denoted as m∗. The number of PMs in an optimal Bin Packing solution is denoted
as m. The load that minimizes the ratio power consumption against load is denoted as
x∗. The subset of VMs with load smaller than x∗ is denoted as Ds.

78 J. Arjona Aroca et al.

Table 2. Summary of bounds on the approximation/competitive ratio ρ for α = 3,
b = 2, and C = 2 on the left and C = 1 on the right. All lower bounds are existential.
The number of PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The number
of PMs in an optimal Bin Packing solution is denoted as m. The load that minimizes
the ratio power consumption against load is denoted as x∗. The subset of VMs with
load smaller than x∗ is denoted as Ds.

that applies to all versions of the problem. The bounds are given as a function
of the input parameters of the problem, in order to allow for tighter expressions.
To provide intuition on how tight the bounds are, we instantiate them for a
realistic4 value of α = 3, and normalized values of b = 2 and C ∈ {1, 2}. The
resulting bounds are shown in Table 2. As can be observed, the resulting upper
and lower bounds are not very far in general.

2 Preliminaries

The following claims will be used in the analysis. We call power rate the power
consumed per unit of load in a PM. Let x be the load of a PM. Then, its power
rate is computed as f(x)/x. The load at which the power rate is minimized,
denoted x∗, is the optimal load , and the corresponding rate is the optimal
power rate ϕ∗ = f(x∗)/x∗. Using calculus we get the following observation.

4 The values for α in the servers studied in [7] (denoted as Erdos and Nemesis) are
close to 1.5 and 3 and x∗ values of 0.76C and 0.9C respectively.

Power-Efficient Assignment of Virtual Machines 79

Observation 1. The optimal load is x∗ = (b/(α − 1))1/α
. Additionaly, for any

x �= x∗, f(x)/x > ϕ∗.

The following lemmas will be used in the analysis.

Lemma 1. Consider two solutions π = {A1, . . . , Am} and π′ = {A′
1, . . . , A

′
m}

of an instance of the VMA problem, such that for some x, y ∈ [1,m] it holds that

– Ax �= ∅ and Ay �= ∅;
– A′

x = Ax ∪ Ay, A′
y = ∅, and Ai = A′

i, for all i �= x and i �= y; and
– �(Ax) + �(Ay) ≤ min{x∗, C}.
Then, P (π′) < P (π).

From this lemma, it follows that the global power consumption can be
reduced by having 2 VMs together in the same PM, when its aggregated load
is smaller than min{x∗, C}, instead of moving one VM to an unused PM. When
we keep VMs together in a given partition we say that we are using Lemma 1.

Lemma 2. Consider two solutions π = {A1, . . . , Am} and π′ = {A′
1, . . . , A

′
m}

of an instance of the VMA problem, such that for some x, y ∈ [1,m] it holds that

– Ax ∪ Ay = A′
x ∪ A′

y, while Ai = A′
i, for all x �= i �= y;

– none of Ax, Ay, A′
x, and A′

y is empty; and
– |�(Ax) − �(Ay)| < |�(A′

x) − �(A′
y)|.

Then, P (π) < P (π′).

Corollary 1. Consider a solution π = {A1, . . . , Am} of an instance of the VMA
problem with total load �(D), such that exactly k of the Ax sets, x ∈ [1,m], are
non-empty (hence it uses k PMs). Then, the power consumption is lower bounded
by the power of the (maybe unfeasible) solution that balances the load evenly, i.e.,
P (π) ≥ kb + k(�(D)/k)α.

3 Offline Analysis

3.1 NP-Hardness

As was mentioned, it can be shown that deciding whether there is a feasible
solution for an instance of the (C,m)-VMA problem is NP-complete or not,
by a direct reduction from the 3-Partition problem. However, this result does
not apply directly to the (C, ·)-VMA, (·,m)-VMA, and (·, ·)-VMA problems. We
show now that these problems are NP-hard. We first prove the following lemma.

Lemma 3. Given an instance of the VMA problem, any solution π =
{A1, . . . , Am} where �(Ai) �= x∗ for some i ∈ [1,m] : Ai �= ∅, has power con-
sumption P (π) > ρ∗�(D) = ρ∗ ∑

d∈D �(d).

We show now in the following theorem that the different versions of the (C,m)-
VMA problem with unbounded C or m are NP-hard.

80 J. Arjona Aroca et al.

Theorem 1. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly
NP-hard, even if α is constant.

It is known that strongly NP-hard problems cannot have a fully polynomial-time
approximation scheme (FPTAS) [37]. Hence, the following corollary.

Corollary 2. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems do not
have fully polynomial-time approximation schemes (FPTAS), even if α is
constant.

In the following sections we show that, while the (·,m)-VMA and (·, ·)-VMA
problems have polynomial-time approximation schemes (PTAS), the (C, ·)-VMA
problem cannot be approximated below 3

2 · α−1+(2/3)α

α .

3.2 The (·,m)-VMA and (·, ·)-VMA Problems have PTAS

We have proved that the (·,m)-VMA and (·, ·)-VMA problems are NP-hard in
the strong sense and that, hence, there exists no FPTAS for them. However,
Alon et al. [2], proved that if a function f(·) satisfies a condition denoted F∗,
then the problem of scheduling jobs in m identical machines so that

∑
i f(Mi) is

minimized has a PTAS, where Mi is the load of the jobs allocated to machine i.
This result implies that if our function f(·) satisfies condition F∗, the same PTAS
can be used for the (·,m)-VMA and (·, ·)-VMA problems. From Observation 6.1
in [20], it can be derived that, in fact, our power consumption function f(·)
satisfies condition F∗. Hence, the following theorem.

Theorem 2. There are polynomial-time approximation schemes (PTAS) for the
(·,m)-VMA and (·, ·)-VMA problems.

3.3 Bounds on the Approximability of the (C, ·)-VMA Problem

We study now the (C, ·)-VMA problem, where we consider an unbounded number
of machines with bounded capacity C. We will provide a lower bound on its
approximation ratio, independently on the relation between x∗ and C; and upper
bounds for the cases when x∗ ≥ C and x∗ < C.

Lower Bound on the Approximation Ratio. The following theorem shows a
lower bound on the approximation ratio of any offline algorithm for (C, ·)-VMA.

Theorem 3. No algorithm achieves an approximation ratio smaller than 3
2 ·

α−1+(2
3)

α

α for the (C, ·)-VMA problem unless P = NP.

Upper Bound on the Approximation Ratio for x∗ ≥ C. We study now
an upper bound on the competitive ratio of the (C, ·)-VMA problem for the
case when x∗ ≥ C. Under this condition, the best is to load each PM to its full
capacity. Intuitively, an optimal solution should load every machine up to its

Power-Efficient Assignment of Virtual Machines 81

maximum capacity or, if not possible, should balance the load among PMs to
maximize the average load. The following lemma formalizes this observation.

Lemma 4. For any system with unbounded number of PMs where x∗ ≥ C the
power consumption of the optimal assignment π∗ is lower bounded by the power
consumption of a (possibly not feasible) solution where �(D) is evenly distributed
among m PMs, where m is the minimum number of PMs required to allocate
all VMs (i.e., the optimal solution of the packing problem). That is, P (π∗) ≥
m · b + m(�(D)/m)α.

Now we prove an upper bound on the approximation ratio showing a reduction
to bin packing [22]. The reduction works as follows. Let each PM be seen as a
bin of capacity C, and each VM be seen as an object to be placed in the bins,
whose size is the VM load. Then, a solution for this bin packing problem instance
yields a feasible (perhaps suboptimal) solution for the instance of (C, ·)-VMA.
Moreover, using any bin-packing approximation algorithm, we obtain a feasible
solution for (C, ·)-VMA that approximates the minimal number of PMs used.
The power consumption of this solution approximates the power consumption
of the optimal solution π∗ of the instance of (C, ·)-VMA. In order to compute an
upper bound on the approximation ratio of this algorithm, we will compare the
power consumption of such solution against a lower bound on the power con-
sumption of π∗. The following theorem shows the approximation ratio obtained.

Theorem 4. For every ε > 0, there exists an approximation algorithm for the
(C, ·)-VMA problem when x∗ ≥ C that achieves an approximation ratio of

ρ < 1 + ε +
Cα

b
+

1
m

,

where m is the minimum number of PMs required to allocate all the VMs.

Upper Bound on the Approximation Ratio for x∗ < C. We study now
the (C, ·)-VMA problem when x∗ < C. In this case, the optimal load per PM
is less than its capacity, so an optimal solution would load every PM to x∗ if
possible, or try to balance the load close to x∗. In this case we slightly modify the
bin packing algorithm described above, reducing the bin size from C to x∗. Then,
using an approximation algorithm for this bin packing problem, the following
theorem can be shown.

Theorem 5. For every ε > 0, there exists an approximation algorithm for the
(C, ·)-VMA problem when x∗ < C that achieves an approximation ratio of

ρ <
m

m∗

(
(1 + ε) +

1
α − 1

)
+

1
m∗ ,

where m∗ is the number of PMs used by the optimal solution of (C, ·)-VMA,
and m is the minimum number of PMs required to allocate all the VMs without
exceeding load x∗ (i.e., the optimal solution of the bin packing problem).

82 J. Arjona Aroca et al.

4 Online Analysis

In this section, we study the online version of the VMA problem, i.e., when the
VMs are revealed one by one. We first study lower bounds and then provide
online algorithms and prove upper bounds on their competitive ratio.

4.1 Lower Bounds

In this section, we compute lower bounds on the competitive ratio for (·, ·)-VMA,
(C, ·)-VMA, (·,m)-VMA, (C,m)-VMA and (·, 2)-VMA problems. We start with
one general construction that is used to obtain lower bounds on the first four
cases. Then, we develop special constructions for (·,m)-VMA and (·, 2)-VMA
that improve the lower bounds for these two problems.

General Construction. We prove lower bounds on the competitive ratio of
(·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA and (C,m)-VMA problems. These lower
bounds are shown in the following two theorems. In Theorem6, we prove a lower
bound on the competitive ratio that is valid in the cases when C is unbounded
and when it is larger or equal than x∗. The case C ≤ x∗ is covered in Theorem 7.

Theorem 6. There exists an instance of problems (·, ·)-VMA, (·,m)-VMA,
(C, ·)-VMA and (C,m)-VMA when C > x∗, such that no online algorithm can
guarantee a competitive ratio smaller than (3/2)2α−1

2α−1 .

Theorem 7. There exists an instance of problems (C, ·)-VMA and (C,m)-VMA
when C ≤ x∗ such that no online algorithm can guarantee a competitive ratio
smaller than (Cα + 2b)/(b + max(Cα, 2(C/2)α + b)).

Special Constructions for (·,m)-VMA and (·, 2)-VMA. We show first
that for m PMs there is a lower bound on the competitive ratio that improves
the previous lower bound when α > 4.5. Secondly, we prove a particular lower
bound for problem (·, 2)-VMA, that improves the previous lower bound when
α > 3.

Theorem 8. There exists an instance of problem (·,m)-VMA such that no
online algorithm can guarantee a competitive ratio smaller than 3α/(2α+2 + ε)
for any ε > 0.

Now, we show a stronger lower bound on the competitive ratio for (·, 2)-VMA
problem.

Theorem 9. There exists an instance of problem (·, 2)-VMA such that no online
algorithm can guarantee a competitive ratio smaller than 3α/2α+1.

Power-Efficient Assignment of Virtual Machines 83

4.2 Upper Bounds

Now, we study upper bounds for (·, ·)-VMA, (C, ·)-VMA, and (·, 2)-VMA prob-
lems. We start giving an online VMA algorithm that can be used in (·, ·)-VMA
and (C, ·)-VMA problems. The algorithm uses the load of the new revealed VM
in order to decide the PM where it will be assigned. If the load of the revealed
VM is strictly larger than min{x∗, C}/2, the algorithm assigns this VM to a
new PM without any other VM already assigned to it. Otherwise, the algorithm
schedules the revealed VM to any loaded PM whose current load is smaller or
equal than min{x∗,C}

2 . Hence, when this new VM is assigned, the load of this PM
remains smaller than min{x∗, C}. If there is no such loaded PM, the revealed
VM is assigned to a new PM. Note that, since the case under consideration
assumes the existence of an unbounded number of PMs, there exists always one
new PM. A detailed description of this algorithm is shown in Algorithm1. As
before, Aj denotes the set of VMs assigned to PM sj at a given time.

Algorithm 1. Online algorithm for (·, ·)-VMA and (C, ·)-VMA problems.
for each VM di do

if �(di) > min{x∗,C}
2

then
di is assigned to a new PM

else

di is assigned to any loaded PM sj where �(Aj) ≤ min{x∗,C}
2

. If such
loaded PM does not exist, di is assigned to a new PM

We prove the approximation ratio of Algorithm1 in the following two
theorems.

Theorem 10. There exists an online algorithm for (·, ·)-VMA and (C, ·)-VMA
when x∗ < C that achieves the following competitive ratio:

ρ = 1, if no VM di has load such that �(di) < x∗,

ρ ≤ (
1 − 1

α

(
1 − 1

2α

)) (
2 + x∗

�(Ds)

)
, otherwise.

Theorem 11. There exists an online algorithm for (C, ·)-VMA when x∗ ≥ C

that achieves competitive ratio ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

�(D)

)
.

Proof. We proceed with the analysis of the competitive ratio of Algorithm1 in
the case when x∗ ≥ C. The analysis uses the same technique used in the proof
for the previous theorem. Hence, we just show the difference.

On one hand, when x∗ ≥ C, it holds that f(�(Ai))/�(Ai) ≥ f(C)/C due to
the fact that f(x)/x is monotone decreasing in interval (0, C]. It is also obvious
that all the PMs will be loaded no more C. As a result, the optimal power
consumption for (C, ·)-VMA can be bounded by P (π∗) ≥ f(C)�(D)/C. On the

84 J. Arjona Aroca et al.

other hand, the solution given by Algorithm1 can also be upper bounded. We
consider the following two cases.

Case 1: �(Âi) ≥ C/2 for all i. In this case, every PM will be loaded between C/2
and C. Consequently,

P (π) =
∑

C
2 ≤�(Âi)≤C

f(�(Âi)) ≤ f(C
2)

C
2

�(D).

The competitive ratio ρ then satisfies

ρ ≤
f(C

2)
C
2

�(D)
f(C)

C �(D)
= 2

f(C
2)

f(C)
≤ 2b

C

(
1 +

1
(α − 1)2α

)
.

Case 2: there exists si such that �(Âi) < C/2. In this case, it holds:

P (π) =
∑

C
2 ≤�(Âi)≤C

f(�(Âi)) + f(�(Âs′))

≤ f(C
2)

C
2

⎛

⎝
∑

di:�(di)≤C

�(di) − �(Âs′)

⎞

⎠ + f(�(Âs′))

=
f(C

2)
C
2

(
�(D) − �(Âs′)

)
+ �(Âs′)α + b.

The competitive ratio ρ then satisfies

ρ ≤ P (π)
f(C)

C �(D)
≤ 2b

C

(
1 +

1
(α − 1)2α

)
+

�(Âs′)α − �(Âs′) f(C
2)

C
2

+ b

f(C)
C �(D)

≤ 2b

C

(
1 +

1
(α − 1)2α

)
+

�(Âs′)α + b
f(C)

C �(D)

≤ 2b

C

(
1 +

1
(α − 1)2α

)
+

(C
2)α + b

f(C)
C �(D)

=
2b

C

(
1 +

1
(α − 1)2α

)(
2 +

C

�(D)

)
.

Upper Bounds for (·, 2)-VMA Problem. We now present an algorithm
(detailed in Algorithm2) for (·, 2)-VMA problem and show an upper bound on
its competitive ratio. A1 and A2 are the sets of VMs assigned to PMs s1 and s2,
respectively, at any given time.

Power-Efficient Assignment of Virtual Machines 85

Algorithm 2. Online algorithm for (·, 2)-VMA.
for each VM di do

if �(di) + �(A1) ≤ (b/(2α − 2))1/α or �(A1) ≤ �(A2) then
di is assigned to s1;

else
di is assigned to s2;

We prove the approximation ratio of Algorithm2 in the following theorem.

Theorem 12. There exists an online algorithm for (·, 2)-VMA that achieves the
following competitive ratios.

ρ = 1, for �(D) ≤
(

b
2α−2

)1/α

,

ρ ≤ max

{
2,

(
3
2

)α−1
}

, for �(D) >
(

b
2α−2

)1/α

.

5 Discussion

We discuss in this section practical issues that must be addressed to apply our
results to production environments.

Heterogeneity of Servers. For the sake of simplicity, we assume in our model
that all servers in a data center are identical. We believe this reasonable, con-
sidering that modern data centers are usually built with homogeneous com-
modity hardware. Nevertheless, the proposed model and derived results are also
amenable to heterogeneous data center environments. In a heterogeneous data
center, servers can be categorized into several groups with identical servers in
each group. Then, different types of applications can be assigned to server groups
according to their resource requirements. The VMA model presented here can
be applied to the assignment problem of allocating tasks from the designated
types of applications (especially CPU-intensive ones) to each group of servers.
The approximation results we derive in this paper can be then combined with
server-group assignment approximation bounds (out of the scope of this paper)
for energy-efficient task assignment in real data centers, regardless of the homo-
geneity of servers.

Consolidation. Traditionally, consolidation has been understood as a bin pack-
ing problem [31,39], where VMs are assigned to PMs attempting to minimize
the number of active PMs. However, the results we derived in this paper, as well
as the results in [7], show that such approach is not energy-efficient. Indeed, we
showed that PM’s should be loaded up to x∗ to reduce energy consumption, even
if this requires having more active PMs.

VM arrival and departure. When a new VM arrives to the system, or
an assigned VM departs, adjustments to the assignment may improve energy

86 J. Arjona Aroca et al.

efficiency. Given that the cost of VM migration is nowadays decreasing dramat-
ically, our offline positive results can also be accommodated by reassigning VMs
whenever the set of VM demands changes. Should the cost of migration be high
to reassign after each VM arrival or departure, time could be divided in epochs
buffering newly arrived VM demands until the beginning of the next epoch,
when all (new and old) VMs would be reassigned (if necessary) running our
offline approximation algorithm.

Multi-resource scheduling. This work focuses on CPU-intensive jobs
(VMs) such as MapReduce-like tasks [19] which are representative in production
datacenters. As the CPU is generally the dominant energy consumer in a server,
assigning VMs according to CPU workloads entails energy efficiency. However,
there exist types of jobs demanding heavily other computational resources, such
as memory and/or storage. Although these resources have limited impact on a
server’s energy consumption, VMs performance may be degraded if they become
the bottleneck resource in the system. In this case, a joint optimization of mul-
tiple resources (out of the scope of this paper) is necessary for VMA.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing. In: Saks, M.E. (ed.) SODA, pp. 493–500. ACM/SIAM (1997)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

3. Amazon. Amazon web services. http://aws.amazon.com. Accessed 27 August 2012
4. Andrews, M., Fernández Anta, A., Zhang, L., Zhao, W.: Routing for power min-

imization in the speed scaling model. IEEE/ACM Trans. Netw. 20(1), 285–294
(2012)

5. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with
(dis)economies of scale. In: Proceedings of 51-st Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 585–592 (2010)

6. Antoniadis, A., Im, S., Krishnaswamy, R., Moseley, B., Nagarajan, V., Pruhs, K.,
Stein, C.: Energy efficient circuit routing. In: SODA, Hallucination helps (2014)

7. Arjona Aroca, J., Chatzipapas, A., Fernández Anta, A., Mancuso, V.: A
measurement-based analysis of the energy consumption of data center servers. In:
e-Energy. ACM (2014)

8. Arjona Aroca, J., Fernández Anta, A., Mosteiro, M.A., Thraves, C., Wang,
L.: Power-efficient assignment of virtual machines to physical machines (2013).
arXiv:1304.7121v2 [cs.DS]. http://arxiv.org/abs/1304.7121

9. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: Proceedings of 20-th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 693–701 (2009)

10. Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Mul-
ticast routing for energy minimization using speed scaling. In: Even, G., Rawitz,
D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 37–51. Springer, Heidelberg (2012)

11. Bellur, U., Rao, C.S., Madhu Kumar, SD.: Optimal placement algorithms for vir-
tual machines (2010). arXiv:1011.5064 (http://arxiv.org/abs/1011.5064)

http://aws.amazon.com
http://arxiv.org/abs/1304.7121v2
http://arxiv.org/abs/1304.7121
http://arxiv.org/abs/1011.5064
http://arxiv.org/abs/1011.5064

Power-Efficient Assignment of Virtual Machines 87

12. Botero, J.F., Hesselbach, X., Duelli, M., Schlosser, D., Fischer, A., de Meer, H.:
Energy efficient virtual network embedding. IEEE Commun. Lett. 16(5), 756–759
(2012)

13. Cardosa, M., Singh, A., Pucha, H., Chandra, A.: Exploiting spatio-temporal trade-
offs for energy-aware mapreduce in the cloud. In: 2011 IEEE International Confer-
ence on Cloud Computing (CLOUD), pp. 251–258 (2011)

14. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capaci-
tated network design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 78–91. Springer, Heidelberg (2011)

15. Chandra, K.A., Wong, C.K.: Worst-case analysis of a placement algorithm related
to storage allocation. SIAM J. Comput. 4(3), 249–263 (1975)

16. Chen, S.-C., Lee, C.-C., Chang, H.-Y., Lai, K.-C., Li, K.-C., Rong, C.: Energy-
aware task consolidation technique for cloud computing. In: Proceedings of the
IEEE Third International Conference on Cloud Computing Technology and Sci-
ence, pp. 115–121 (2011)

17. Citrix. Citrix. http://www.citrix.com. Accessed 27 August 2012
18. Cody, R.A., Coffman Jr, E.G.: Record allocation for minimizing expected retrieval

costs on drum-like storage devices. J. ACM 23(1), 103–115 (1976)
19. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (2008)
20. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related

and identical parallel machines. Algorithmica 39(1), 43–57 (2004)
21. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in

linear time. Combinatorica 1(4), 349–355 (1981)
22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York (1979)
23. Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear opti-

mization with applications to speed scaling. In: Erlebach, T., Persiano, G. (eds.)
WAOA 2012. LNCS, vol. 7846, pp. 173–186. Springer, Heidelberg (2013)

24. Im, S., Moseley, B., Pruhs, K.: Online scheduling with general cost functions. In:
Proceedings of 23-rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1254–1265 (2012)

25. Jansen, R., Brenner, P.R.: Energy efficient virtual machine allocation in the cloud.
In: 2011 International Green Computing Conference and Workshops (IGCC), pp.
1–8 (2011)

26. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and
performance management of virtualized computing environments via lookahead
control. Cluster Comput. 12(1), 1–15 (2009)

27. Liu, N., Dong, Z., Rojas-Cessa, R.: Task and server assignment for reduction of
energy consumption in datacenters. In: Proceedings of the IEEE 11-th International
Symposium on Network Computing and Applications, pp. 171–174 (2012)

28. Machida, F., Kawato, M., Maeno, Y.: Redundant virtual machine placement for
fault-tolerant consolidated server clusters. In: 2010 IEEE Network Operations and
Management Symposium (NOMS), pp. 32–39 (2010)

29. Mark, C.C.T., Niyato, D., Chen-Khong, T.: Evolutionary optimal virtual machine
placement and demand forecaster for cloud computing. In: 2011 IEEE International
Conference on Advanced Information Networking and Applications (AINA), pp.
348–355 (2011)

30. Mills, K., Filliben, J., Dabrowski, C.: Comparing vm-placement algorithms for on-
demand clouds. In: Proceedings of the IEEE Third International Conference on
Cloud Computing Technology and Science, pp. 91–98 (2011)

http://www.citrix.com

88 J. Arjona Aroca et al.

31. Mishra, M., Sahoo, A.: On theory of vm placement: anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In: 2011 IEEE
International Conference on Cloud Computing (CLOUD), pp. 275–282 (2011)

32. Nathuji, R., Schwan, K.: Virtualpower: coordinated power management in virtu-
alized enterprise systems. In: SOSP, pp. 265–278 (2007)

33. Van Nguyen, H., Tran, F.D., Menaud, J.-M.: Autonomic virtual resource manage-
ment for service hosting platforms. In: Proceedings of the 2009 ICSE Workshop
on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pp. 1–8.
IEEE Computer Society (2009)

34. Rackspace. Rackspace. http://www.rackspace.com. Accessed 27 August 2012
35. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-

puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, HotPower’08, p. 10. USENIX Association (2008)

36. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-efficient scheduling
heuristics for deadline constrained workloads on hybrid clouds. In: Proceedings of
the IEEE Third International Conference on Cloud Computing Technology and
Science, pp. 320–327 (2011)

37. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)
38. Viswanathan, H., Lee, E.K., Rodero, I., Pompili, D., Parashar, M., Gamell, M.:

Energy-aware application-centric vm allocation for HPC workloads. In: 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), pp. 890–897 (2011)

39. Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic
bandwidth demand in data centers. In: IEEE INFOCOM, pp. 71–75 (2011)

40. Xu, J., Fortes, J.: A multi-objective approach to virtual machine management in
datacenters. In: Proceedings of the 8th ACM International Conference on Auto-
nomic Computing, ICAC ’11, pp. 225–234. ACM (2011)

http://www.rackspace.com

	Power-Efficient Assignment of Virtual Machines to Physical Machines
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work
	1.3 Our Results

	2 Preliminaries
	3 Offline Analysis
	3.1 NP-Hardness
	3.2 The (,m)-VMA and (,)-VMA Problems have PTAS
	3.3 Bounds on the Approximability of the (C,)-VMA Problem

	4 Online Analysis
	4.1 Lower Bounds
	4.2 Upper Bounds

	5 Discussion
	References

