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Abstract 
Simulation is an important method to evaluate future 

computer systems. However, the increasing complexity of the 
target systems has made the development of simulators very 
difficult. Furthermore, detailed simulation of large-scale 
parallel architecture is so slow that full evaluation of real 
application becomes a great challenge.  

This paper presents SimICT, a fast and flexible simulation 
framework which aims at performance and power evaluation 
for large-scale architecture. SimICT uses component-based 
design to improve its flexibility of building target systems. It 
also introduces an automatic parallel mechanism with relaxed 
synchronization to speed up the simulation. Finally, it 
provides a graphic configuration interface to ease the use 
difficulty. Based on this framework, various existing models, 
such as performance and power modeling tools, can be 
integrated to produce a holistic simulation platform. 
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1. Introduction 

1.1. Motivation 
Software simulator is an essential system-level design tool 

for both architecture design and software development. With 
the simulators, software developers can validate their 
programs without the need of real target machines, which 
significantly shortens design turnaround time. Also, the 
transparency and debuggability of the simulator can help 
developers quickly converge on design problems. After years 
of development, the single-core simulator is close to be ideal, 
i.e. accurate and fast. However, parallel architecture such as 
multi-core/many-core gradually replaces the traditional 
single-core architecture due to the advance in semiconductor 
manufacturing process. As a result, parallel architecture 
simulator is becoming more and more important. 

1.2. Problem 
However, building a large-scale parallel system simulator 

is notoriously difficult. The increasing complexity of both the 
simulated systems and target workloads has aggravated the 
difficulties of the development of simulators. In addition to 
the performance, power consumption has also become a 
major challenge to large-scale architecture design. Under such 
a situation, researchers need to improve their infrastructures 
and methodology to build a holistic simulator for their 
architectural design jobs.  

Among various considerable factors of simulators, speed 
and flexibility are two of the most important, especially when 
we simulate large-scale target systems. First, as the simulated 

parallel system is still scaling out and the design space is 
becoming larger and larger, we must provide a flexible 
method to decrease the complexity of constructing target 
system and make the simulated architecture easy to be 
changed. Furthermore, simulation speed is also critical in this 
situation. Slow speed makes the evaluation of real 
applications impossible, so we must try to improve the 
simulation speed as possible as we can. Obviously, parallel 
simulation is the efficient method. However, it would be a 
very tough work to develop a parallel simulator, even for 
advanced engineer. In addition to that, simulator often needs 
to be modified to model a new target system. So the 
parallelization optimization specific to one target system may 
not work on others. The repeated work is usually boring and 
time consuming.  

1.3. Solution 
In this paper, we proposed a fast and flexible simulation 

framework named SimICT to cope with the problems above. 
The basic principle is to divide the simulator into two loosely 
coupled parts: the components and framework. The key 
features of SimICT include: 
(1) Flexible simulation based on instantiated components. As 

we know, most of the physical computer systems are 
based on standard modules. So users can construct 
different systems by choosing different modules. Inspired 
by this, we can also use a component-based method to 
construct the target system.  For a homogeneous system, 
we can easily simulate it by instantiating multiple 
components from the same class. Besides, the standard 
interface of components makes power models easy to be 
integrated.  

(2) Automatic parallel mechanism with self-defined relaxed 
synchronization. Once the components are instantiated 
and the topology is defined. SimICT will schedule the 
components into different threads or processes and run 
them in parallel automatically. In this way, developers are 
alleviated from the tough work of making parallelization 
to speed up the simulator. Besides, SimICT allows the 
user to relax the synchronization time in order to get a 
better performance. This is quite important when the 
simulation case is very time-consuming.  

(3) Visualized configurator. To ease the use difficulty, a 
graphic user interface (GUI) is integrated into SimICT.  It 
can be used to instantiate the components, initialize the 
parameters, define the topology, and configure the 
SimICT.  This interface is much easier to use compared 
with other commonly used methods like script language.  
The rest of this paper is organized as follows: Section 2 

discusses related work. We introduce the design of SimICT 
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framework in Section 3. Section 4 presents some examples of 
using SimICT for network-on-chip performance and power 
evaluation. Finally, we summarize the paper in Section 5. 

2. Related Work 
Intel’s Asim[2] is a modular framework for complexity 

computer system simulation. Asim copes with the 
complexities through modularity and reusability. Modularity 
helps break down the performance-modeling problem into 
individual pieces that can be modeled separately, while 
reusability allows using a software component repeatedly in 
different contexts. Reusability increases productivity and 
confidence in the robustness of the software component itself. 
However, Asim does not support parallel simulation.  

SST [5] is an open-source, modular, parallel simulation 
framework. It includes a number of processor, memory, and 
network models. The SST has been used in a variety of 
network, memory, and application studies and aims to become 
the standard simulation framework for designing and 
procuring HPC system. It takes a modular approach that 
allows system models to be built using the components in its 
repository. For parallel simulation, it uses barriers to address 
the synchronization problem. Unlike our implementation, this 
is a relatively conservative algorithm. 

The Manifold [7] project is an open source software 
project whose goal is to provide a scalable infrastructure for 
modeling and simulation of many core architectures. The 
underlying philosophy is to achieve scalable simulation 
capacity by using well known and tested parallel discrete 
event simulation (PDES) [8] algorithm and parallel time 
stepped simulation techniques to enable coarse grain parallel 
simulation of many core architectures. Manifold has good 
support for parallelization, but it does not address the relaxed 
synchronization. 

SIMFLEX [14] is a simulation framework which uses 
component-based design and rigorous statistical sampling to 
enable development of complex models and ensure 
representative measurement results with fast simulation 
turnaround. The novelty of SIMFLEX lies in its combination 
of a unique, compile-time approach to component 
interconnection and a methodology for obtaining accurate 
results from sampled simulations on a platform capable of 
evaluating unmodified commercial workloads. SIMFLEX 
uses sampled-based method to improve the speed, not 
parallelization mechanism. 

Simics [3] is a commercial simulator framework which 
has been very extensively used in both academia and industry. 
It has a large library of simulated components available for 
users to use to construct system modeling. Examples include 
the processors, memories, and system controllers. Various 
buses and networks are available. Simics also offers a 
convenient software test and debug environment, with 
features like instant stop of execution, checkpoint and restart, 
as well as reverse debugging and reverse execution. In order 
to improve the simulation speed, Simics provides a tool 
named Simics Accelerator [4]. It takes advantage of multicore 
hosts to improve the execution speed of large target system 
simulation. However, shared-memory multi-core target 
system is not well supported in this parallel mechanism.  

Similar with the simulators mentioned above, SimICT also 
uses a component-based method to construct the target 
systems. However, SimICT has made some remarkable 
improvements. For example, when simulating a large-scale 
homogeneous system, we just define a component class, and 
construct the target system by instantiating multiple 
component objects through the GUI. In addition, SimICT 
provides a flexible synchronization mechanism which can be 
relaxed by the user.  

There are lots of other simulators aiming at large-scale 
system evaluation, typical examples include Graphite[9], 
Hornet[10], GEMS[12], GEM5[11], COTSon[13], etc. 
However, these simulators either do not use component-based 
method, losing high flexibility, or do not support 
parallelization, leading to very slow simulation speed. 

3. Design of SimICT 
In this section, we describe the architecture and 

implementation details of SimICT simulation framework. We 
first describe the basic architecture in section 3.1. Then we 
introduce the implementation of framework and components 
in section 3.2 and section 3.3 respectively. Finally, we present 
the power models of SimICT in section 3.4. 

3.1. Basic Architecture 
The first principle of SimICT is detaching the behavior of 

target systems and the service of simulation. Figure 1 shows 
the basic architecture. As we can see, the simulator based on 
SimICT is composed of two parts: components and 
framework.  

In SimICT, the simulated modules of target system, such 
as CPU cores, memories, routers, are organized as 
independent components. The Components only implement 
the behavior (function or timing level) of corresponding target 
system modules. To keep the components independent of the 
framework, components use standard interface to 
communicate with each other. Thus the simulation framework 
can conveniently execute the scheduling and synchronization 
operations. Besides, this also makes the components easy to 
be replaced.   

Framework part is the key of SimICT. We introduce a 
concept of framework service (FS) to organize and schedule 
the components. FS is the basic scheduling unit of SimICT. 
Each component has to be mapped into one FS, while one FS 
can manage multiple components.  

Figure 2 illustrates a layered view of SimICT-based 
simulator. The top one is user layer which contains the 
application and system software running on the target system. 
The second one is target layer consisting of all the 
components. Each component is responding to an individual 
module of the simulated systems. The third layer is simulation 
service layer, which mainly composes of multiple framework 
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Figure 2. A Layered View of SimICT-Based Simulator 

services. As we can see, framework services can 
communicate with each other, however, each component in 
target layer is isolated with others, and it completes 
communication operations with the help of framework 
services. We will discuss this in the section 3.2.1.  The 
nethermost one is host layer, which contains the physical 
machine running SimICT simulator. The host is usually a 
multi-core system when running it in parallel.  

3.2. Framework Service 
As show in figure 1, there are mainly three modules in 

SimICT framework: communication module, parallelization 
module, and configuration module.  

3.2.1. Communication 
To keep the interfaces between components cleaner and 

better defined, SimICT uses a port-based communication 
paradigm. There are two main interface functions: port_in and 
port_out. When a component wants to communicate with 
others, it sends out the message through port_out function, 
with the destination’s identity number and latency 
information in the parameters.  

As we mentioned before, the components are mapped into 
different framework services, and SimICT schedules the 
framework services running on different threads or processes. 
Therefore, if the receiving component of port_out and the 
sending component locate in the same framework service, the 
message can be forwarded to the receiver directly. Otherwise, 
if the sender and receiver are in different framework services, 
an inter-thread or inter-process method must be used.  

In order to reduce the overhead of framework service 
communication, SimICT executes the message sending 
operations together at synchronization points. For this 
purpose, we define an out_queue in each framework service. 
All the port_out operations will be buffered in the out_queue 
and sent out when arriving at the synchronization point. Each 
framework service also has an in_queue to receive the 
messages. All the messages in the in_queue will be sorted by 
processing time. When the processing time has arrived, the 
message is handled by calling the receiving component’s 
port_in function.   

Figure 3 shows the process of port-based communication 
between different framework services. The parameters in the 
port_out function will indicate the message’s destination and 
latency time. The framework is responsible to send the 
message to the right target component at the right time.  

Port-based communication gives a good privacy to each 
component. Component’s inner state is invisible to others.  
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Figure 3.  Port-Based Communication 

Thanks to this, SimICT is able to schedule lots of components 
in parallel and easily change some components without 
affecting the others. 

Unfortunately, this well-defined isolation produces a 
negative effect on the performance. Because all the 
component communication must go through the framework, it 
takes a relatively long time before completion. In order to 
avoid some unnecessary overhead, SimICT framework also 
provides another alternative communication mechanism based 
on callback functions. 

If callback mechanism is used, the receiving component 
needs to define a function and register it as callback in the 
framework. Then the sending component can directly call this 
callback function to complete the communication. Callback 
function communication is faster than port-based method. 
However, it violates the isolation principle of components. 
Therefore, SimICT allows components to use callback 
function if it does not affect the parallelization. For example, 
the communication is between two components belonging to 
the same framework service, or the callback function does not 
cause any data race.  

3.2.2. Parallelization 
Auto-parallelization is one of the key features of SimICT. 

Based on port communication, each component is bound to a 
framework service. As shown in figure 2, SimICT assigns the 
framework services into different host cores, thus components 
belonging to different framework services can run in parallel.  

This parallelization is transparent to components and does 
not affect the implementation of target system simulation. If 
the couple of FSs belong to different processes, SimICT uses 
MPI-style communication. Otherwise, if they belong to 
different threads, Pthread-style is used. 

SimICT uses event-driven mode for the timing advance. 
For the purpose of parallelization, each framework service has 
an independent event queue. The FS can advance its time 
freely before arriving at next synchronization point. The 
synchronization algorithm is a key factor which affects the 
final performance. For SimICT, it supports two kinds of 
synchronization mechanism: CMB (Chandy-Misra-Bryant) 
algorithm [1] and quantum-based synchronization.  

Strict synchronization produces accurate simulation 
results. However, it leads to very heavy synchronization 
overhead, which will further decrease the speedup results. In 
order to avoid this problem, SimICT lets the user to balance 
the speed and accuracy. It allows a user-adjusted relaxed 
synchronization. For example, a cycle accurate quantum- 
based synchronization usually forces the quantum to be as 
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Figure 4.  Configuration Flow in SimICT Framework 

small as possible. 
Normally a large synchronization granularity leads to a 

better speed, but worse accuracy. However, sometimes it is 
necessary to improve the speed at the cost of accuracy. Thus 
SimICT allows users to relax the synchronization granularity 
for both CMB algorithm and quantum-based method.  

Relaxed synchronization means longer synchronization 
period, which usually incurs larger accuracy errors. Note that 
the functional correctness is still guaranteed as long as the 
benchmarks themselves are synchronized correctly. 

3.2.3. Configuration 
SimICT provides a powerful component-based system 

construction method. However, it is still a complicated task to 
configure a very large-scale target system. For example, if we 
want to simulate many-core architecture with thousands of 
cores, we need to instantiate thousands of core components 
and connect all of them according to the topology. Besides, 
the parameters of each core need to be set correctly. 
Obviously this is a very boring and fallible process.  

To cope with this problem, SimICT develops a graphic 
user interface for the system configuration, with no need for 
the use of obscure script languages. The flow of configuration 
is shown in figure 4. First, the user instantiates the 
components by drag-and-drop operations, and sets the 
topology structure by drawing the connecting lines. After that, 
SimICT will convert the configuration information into a 
record file with intermediate format. When the simulator 
starts, it reads in the record file, and saves the information 
into a structure which can be found by a pointer cfg_ptr. 

The parameters of each component and the mapping 
relationship between components and framework services can 
also be configured through this graphic interface.  SimICT 
stores all the configuration information into a binary database 
file, and loads it directly next time if the target system is the 
same, avoiding the reconfiguration process.  

SimICT organizes the configuration information into a 
tree structure. It can find the position of each port, component, 
and framework service according to the identity number. This 
is necessary when handling the communication between 
different components.  

3.3. Component 
SimICT framework provides an infrastructure of the  

 
Figure 5.  Example of Router Component Definition 

simulator. We still need to implement all the components of 
target system. Simulating a large-scale parallel system may 
contain hundreds or thousands of components. Therefore, it is 
an arduous work to write all the components one by one. 
Fortunately, most large-scale systems are homogeneous, or 
partly homogeneous. Thus we only need to write one copy of 
the code for each type of component. Multiple components 
can be instantiated by the user in the graphic interface.  

Thus, each component’s code is compiled into a dynamic 
link library file. Some commonly used nodes, such as core, 
memory, memory controller, and router, exist in SimICT as 
dynamic link libraries. Note that, nodes with different 
architecture still need to be implemented independently. For 
example, there are different dynamic link library files for x86 
core and ARM core.  

SimICT uses standard interface for components 
communication. Furthermore, SimICT makes the definition of 
a new component class quite simple. Figure 5 shows an 
example of defining a router component class. SimICT 
provides some macros as template. Therefore, the user can 
easily finish the implementation based on these macros. The 
main contents include the name, initial function, finished 
function, in ports, out ports, command functions, and 
parameters.  

3.4. Power Model 
As an infrastructure, SimICT supports both full-system 

simulation and application level simulation. It also supports 
both performance and power evaluation.  

When evaluating the power, the users can develop the new 
power components. Besides, SimICT also provides a standard 
interface to integrate other existing power modeling tools, 
such as Wattch [16], Orion [15], and McPAT [18]. These 
tools are implemented as power libraries and independent of 
the front-end performance components. 

It should be noticed that, in addition to the performance 
and power models, other modeling tools can also be 
integrated into SimICT. For example, thermal models like 
HotSpot [17], and other processor models like Qsim [19] are 
all compatible with SimICT framework.  

4. Example Study 
The SimICT framework has been used for study in a 

several areas, including multi-core architecture, network-on-
chip (NoC), power/thermal modeling, application analysis and 
optimization. In this section, we will give an example of NoC 



 

  

 
Figure 6.  AXI Network Topology 

simulation for performance and power analysis to 
demonstrate the usage of SimICT.  

4.1. NoC Simulation 
We setup a timing model of multi-level AXI network 

based on SimICT framework.  The goal of this simulation is 
to evaluate the performance and power consumption of NoC. 
Figure 6 presents the topology of the network. It consists of 
256 cores and three-level crossbars. Memory controllers are 
connected to level-two crossbar, while every eight cores are 
organized into a group and connected by level-three crossbar.  

In the experiment, simulation is driven by read/write 
operations in trace file. The trace information is converted to 
network packets when injecting into the network. Each 
crossbar receives the packets, and simulates the channels of 
AXI protocol in detail. If the channel is available, the packet 
is transmitted to the next level. Otherwise if the channel is 
busy, it blocks the packet and forwards the event after a 
configured latency. 

To model such a network with SimICT framework, we 
first define three component classes for cores, crossbars, and 
memory controller units respectively. Then we create multiple 
components by instantiating them from the classes. After that, 
we set the topology structure and initialize the parameters for 
each component through the graphic configuration interface. 
If we want to simulate the network in parallel, we need to set 
the number of threads we want to launch and the mapping 
relationship between components and threads. These are all 
the tasks we need to do before running the simulator. 
Obviously it is much simpler than starting from scratch.  
 Parameters Configuration 
Target 
NoC 

clock freq. 1GHz 
technology 65nm 
architecture AXI protocol, 5 channels, 64-bit 

address bus, 128-bit data bus, 2-cycle 
latency, round-robin arbitration 

Benchmark WordCount Input size: 100MB 
TeraSort Input size: 100MB 
Search 20MB index file 

Table 1. Evaluation Configuration 

 Search WordCount TeraSort 
Real bandwidth (Gb) 177 205 22.67 
Bandwidth ratio (%) 0.82 0.95 0.11 
Throughput (G packet/s) 1.23 1.43 0.16 
Average response time (cycle) 3.33 17.49 43.09 
Average latency (cycle) 34.83 77.17 94.99 
Link usage ratio (%) 2.81 3.32 0.37 
Waiting time of each packet 
(cycle) 

2.68 7.40 10.35 

Table 2. Results of Performance Evaluation 

4.2. NoC Performance Evaluation 
We choose threeMapReduce applications as benchmarks: 

Search, WordCount, and TeraSort. WordCount and TeraSort 
are ported form Phoenix++ [6], and Search is from Xapian 
project [20]. The detailed configuration of our evaluation is 
shown in table 1.  

Table 2 gives some performance results for each 
benchmark. Real bandwidth, bandwidth ratio, and throughput 
are used to evaluate the overall performance of this network, 
while the remaining parameters are used to depict the detailed 
characteristic. We can see that, compared with Search and 
WordCount, TeraSort gets an obvious performance gap when 
running on this kind of network. This is because TeraSort has 
much more burst memory access operations. Besides, all the 
benchmarks produce a low bandwidth utilization ratio. Thus 
we need to take a close-up view of the detailed results. We 
see that normally it is not the maximum physical bandwidth 
that limits the performance. What we really need to do is to 
improve the effective utilization of the bandwidth resource.  

4.3. NoC Power Evaluation 
To evaluate power consumption of network, we have 

integrated Orion [15] into SimICT framework. To keep the 
flexibility, Orion is ported independently of the NoC 
implementation, thus this power evaluation models can also 
be used with other network components together. Parameters 
collected in runtime from network components are passed into 
Orion power model to produce the power evaluation results. 
When providing power consumption information, the Orion 
power model is enabled. 

To evaluate the power of AXI network structure in Figure 
6, Table 3 shows the results of power evaluation. We can see 
that power consumption has much to do with the application 
characteristic. Among the three benchmarks, the lowest power 
is only a little more than 1/4 of the highest one.  The results 
also show that the power consumption is almost linear with 
the packet injection ratio. If fewer packets are injected into 
the network, less power would be consumed.  For the similar 
reason, each crossbar in the lower level consumes larger 
power. For example, there is only one crossbar in level one. 
However, it consumes more than 10% power for all the three 
benchmarks. 
 Search WordCount TeraSort 
Level 1   (1 crossbar) 2.267 3.494 0.694 
Level 2  (4 crossbars) 6.484 9.182 1.828 
Level 3  (16 crossbars) 4.484 7.430 3.166 
Total 13.235 20.106 5.688 

Table 3. Results of Power Evaluation (W) 



 

  

5. Conclusion and Future Work 
This paper presents SimICT, a fast and flexible framework 

which aims at performance and power evaluation for large-
scale architecture. There are three key features of this 
framework: First, SimICT provides a flexible simulation 
based on instantiated components. The standard interface of 
components also makes power models easy to be integrated. 
Second, it implements an automatic parallel mechanism with 
self-defined relaxed synchronization, producing better 
performance for large-scale system simulation. Finally, a 
visualized configurator is integrated into SimICT, making it 
much easier to use compared with other commonly used 
methods like script languages.  

Based on SimICT, various existing models, such as 
performance and power modeling tools, can be integrated to 
produce a holistic simulation platform. We believe that 
SimICT framework could be an attractive option for 
achieving fast and flexible simulation for large-scale parallel 
architecture. 

There are mainly two directions in our future work. First, 
we will continue to optimize the communication and 
synchronization of SimICT to further improve the simulation 
speed. Second, we are going to develop more components and 
integrate more existing models, such as thermal and reliability 
tools, into SimICT. 
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