
SimICT: A Fast and Flexible Framework for Performance and Power Evaluation of
Large-Scale Architecture

Xiaochun Ye, Dongrui Fan, Ninghui Sun, Shibin Tang, Mingzhe Zhang, and Hao Zhang

State Key Laboratory of Computer Architecture, Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

{yexiaochun, fandr, snh, tangshibin, zhangmingzhe, zhanghao}@ict.ac.cn

Abstract
Simulation is an important method to evaluate future

computer systems. However, the increasing complexity of the
target systems has made the development of simulators very
difficult. Furthermore, detailed simulation of large-scale
parallel architecture is so slow that full evaluation of real
application becomes a great challenge.

This paper presents SimICT, a fast and flexible simulation
framework which aims at performance and power evaluation
for large-scale architecture. SimICT uses component-based
design to improve its flexibility of building target systems. It
also introduces an automatic parallel mechanism with relaxed
synchronization to speed up the simulation. Finally, it
provides a graphic configuration interface to ease the use
difficulty. Based on this framework, various existing models,
such as performance and power modeling tools, can be
integrated to produce a holistic simulation platform.

Keywords
Framework, Parallel Simulation, Power Evaluation

1. Introduction

1.1. Motivation
Software simulator is an essential system-level design tool

for both architecture design and software development. With
the simulators, software developers can validate their
programs without the need of real target machines, which
significantly shortens design turnaround time. Also, the
transparency and debuggability of the simulator can help
developers quickly converge on design problems. After years
of development, the single-core simulator is close to be ideal,
i.e. accurate and fast. However, parallel architecture such as
multi-core/many-core gradually replaces the traditional
single-core architecture due to the advance in semiconductor
manufacturing process. As a result, parallel architecture
simulator is becoming more and more important.

1.2. Problem
However, building a large-scale parallel system simulator

is notoriously difficult. The increasing complexity of both the
simulated systems and target workloads has aggravated the
difficulties of the development of simulators. In addition to
the performance, power consumption has also become a
major challenge to large-scale architecture design. Under such
a situation, researchers need to improve their infrastructures
and methodology to build a holistic simulator for their
architectural design jobs.

Among various considerable factors of simulators, speed
and flexibility are two of the most important, especially when
we simulate large-scale target systems. First, as the simulated

parallel system is still scaling out and the design space is
becoming larger and larger, we must provide a flexible
method to decrease the complexity of constructing target
system and make the simulated architecture easy to be
changed. Furthermore, simulation speed is also critical in this
situation. Slow speed makes the evaluation of real
applications impossible, so we must try to improve the
simulation speed as possible as we can. Obviously, parallel
simulation is the efficient method. However, it would be a
very tough work to develop a parallel simulator, even for
advanced engineer. In addition to that, simulator often needs
to be modified to model a new target system. So the
parallelization optimization specific to one target system may
not work on others. The repeated work is usually boring and
time consuming.

1.3. Solution
In this paper, we proposed a fast and flexible simulation

framework named SimICT to cope with the problems above.
The basic principle is to divide the simulator into two loosely
coupled parts: the components and framework. The key
features of SimICT include:
(1) Flexible simulation based on instantiated components. As

we know, most of the physical computer systems are
based on standard modules. So users can construct
different systems by choosing different modules. Inspired
by this, we can also use a component-based method to
construct the target system. For a homogeneous system,
we can easily simulate it by instantiating multiple
components from the same class. Besides, the standard
interface of components makes power models easy to be
integrated.

(2) Automatic parallel mechanism with self-defined relaxed
synchronization. Once the components are instantiated
and the topology is defined. SimICT will schedule the
components into different threads or processes and run
them in parallel automatically. In this way, developers are
alleviated from the tough work of making parallelization
to speed up the simulator. Besides, SimICT allows the
user to relax the synchronization time in order to get a
better performance. This is quite important when the
simulation case is very time-consuming.

(3) Visualized configurator. To ease the use difficulty, a
graphic user interface (GUI) is integrated into SimICT. It
can be used to instantiate the components, initialize the
parameters, define the topology, and configure the
SimICT. This interface is much easier to use compared
with other commonly used methods like script language.
The rest of this paper is organized as follows: Section 2

discusses related work. We introduce the design of SimICT

978-1-4799-1235-3/13/$31.00 ©2013 IEEE 273 Symposium on Low Power Electronics and Design

framework in Section 3. Section 4 presents some examples of
using SimICT for network-on-chip performance and power
evaluation. Finally, we summarize the paper in Section 5.

2. Related Work
Intel’s Asim[2] is a modular framework for complexity

computer system simulation. Asim copes with the
complexities through modularity and reusability. Modularity
helps break down the performance-modeling problem into
individual pieces that can be modeled separately, while
reusability allows using a software component repeatedly in
different contexts. Reusability increases productivity and
confidence in the robustness of the software component itself.
However, Asim does not support parallel simulation.

SST [5] is an open-source, modular, parallel simulation
framework. It includes a number of processor, memory, and
network models. The SST has been used in a variety of
network, memory, and application studies and aims to become
the standard simulation framework for designing and
procuring HPC system. It takes a modular approach that
allows system models to be built using the components in its
repository. For parallel simulation, it uses barriers to address
the synchronization problem. Unlike our implementation, this
is a relatively conservative algorithm.

The Manifold [7] project is an open source software
project whose goal is to provide a scalable infrastructure for
modeling and simulation of many core architectures. The
underlying philosophy is to achieve scalable simulation
capacity by using well known and tested parallel discrete
event simulation (PDES) [8] algorithm and parallel time
stepped simulation techniques to enable coarse grain parallel
simulation of many core architectures. Manifold has good
support for parallelization, but it does not address the relaxed
synchronization.

SIMFLEX [14] is a simulation framework which uses
component-based design and rigorous statistical sampling to
enable development of complex models and ensure
representative measurement results with fast simulation
turnaround. The novelty of SIMFLEX lies in its combination
of a unique, compile-time approach to component
interconnection and a methodology for obtaining accurate
results from sampled simulations on a platform capable of
evaluating unmodified commercial workloads. SIMFLEX
uses sampled-based method to improve the speed, not
parallelization mechanism.

Simics [3] is a commercial simulator framework which
has been very extensively used in both academia and industry.
It has a large library of simulated components available for
users to use to construct system modeling. Examples include
the processors, memories, and system controllers. Various
buses and networks are available. Simics also offers a
convenient software test and debug environment, with
features like instant stop of execution, checkpoint and restart,
as well as reverse debugging and reverse execution. In order
to improve the simulation speed, Simics provides a tool
named Simics Accelerator [4]. It takes advantage of multicore
hosts to improve the execution speed of large target system
simulation. However, shared-memory multi-core target
system is not well supported in this parallel mechanism.

Similar with the simulators mentioned above, SimICT also
uses a component-based method to construct the target
systems. However, SimICT has made some remarkable
improvements. For example, when simulating a large-scale
homogeneous system, we just define a component class, and
construct the target system by instantiating multiple
component objects through the GUI. In addition, SimICT
provides a flexible synchronization mechanism which can be
relaxed by the user.

There are lots of other simulators aiming at large-scale
system evaluation, typical examples include Graphite[9],
Hornet[10], GEMS[12], GEM5[11], COTSon[13], etc.
However, these simulators either do not use component-based
method, losing high flexibility, or do not support
parallelization, leading to very slow simulation speed.

3. Design of SimICT
In this section, we describe the architecture and

implementation details of SimICT simulation framework. We
first describe the basic architecture in section 3.1. Then we
introduce the implementation of framework and components
in section 3.2 and section 3.3 respectively. Finally, we present
the power models of SimICT in section 3.4.

3.1. Basic Architecture
The first principle of SimICT is detaching the behavior of

target systems and the service of simulation. Figure 1 shows
the basic architecture. As we can see, the simulator based on
SimICT is composed of two parts: components and
framework.

In SimICT, the simulated modules of target system, such
as CPU cores, memories, routers, are organized as
independent components. The Components only implement
the behavior (function or timing level) of corresponding target
system modules. To keep the components independent of the
framework, components use standard interface to
communicate with each other. Thus the simulation framework
can conveniently execute the scheduling and synchronization
operations. Besides, this also makes the components easy to
be replaced.

Framework part is the key of SimICT. We introduce a
concept of framework service (FS) to organize and schedule
the components. FS is the basic scheduling unit of SimICT.
Each component has to be mapped into one FS, while one FS
can manage multiple components.

Figure 2 illustrates a layered view of SimICT-based
simulator. The top one is user layer which contains the
application and system software running on the target system.
The second one is target layer consisting of all the
components. Each component is responding to an individual
module of the simulated systems. The third layer is simulation
service layer, which mainly composes of multiple framework

 Figure 1. SimICT Architecture

Component Component Component

Framework
Service

Framework
Service

Framework
Service

Component Component

Target application

Target layer

Simulation
service layer

Host layer

User layer

Multi-core host machine
Figure 2. A Layered View of SimICT-Based Simulator

services. As we can see, framework services can
communicate with each other, however, each component in
target layer is isolated with others, and it completes
communication operations with the help of framework
services. We will discuss this in the section 3.2.1. The
nethermost one is host layer, which contains the physical
machine running SimICT simulator. The host is usually a
multi-core system when running it in parallel.

3.2. Framework Service
As show in figure 1, there are mainly three modules in

SimICT framework: communication module, parallelization
module, and configuration module.

3.2.1. Communication
To keep the interfaces between components cleaner and

better defined, SimICT uses a port-based communication
paradigm. There are two main interface functions: port_in and
port_out. When a component wants to communicate with
others, it sends out the message through port_out function,
with the destination’s identity number and latency
information in the parameters.

As we mentioned before, the components are mapped into
different framework services, and SimICT schedules the
framework services running on different threads or processes.
Therefore, if the receiving component of port_out and the
sending component locate in the same framework service, the
message can be forwarded to the receiver directly. Otherwise,
if the sender and receiver are in different framework services,
an inter-thread or inter-process method must be used.

In order to reduce the overhead of framework service
communication, SimICT executes the message sending
operations together at synchronization points. For this
purpose, we define an out_queue in each framework service.
All the port_out operations will be buffered in the out_queue
and sent out when arriving at the synchronization point. Each
framework service also has an in_queue to receive the
messages. All the messages in the in_queue will be sorted by
processing time. When the processing time has arrived, the
message is handled by calling the receiving component’s
port_in function.

Figure 3 shows the process of port-based communication
between different framework services. The parameters in the
port_out function will indicate the message’s destination and
latency time. The framework is responsible to send the
message to the right target component at the right time.

Port-based communication gives a good privacy to each
component. Component’s inner state is invisible to others.

Framework Service

IN_QUEUE

OUT_QUEUE

OUT_QUEUE

IN_QUEUE

Send Recv
Components Components

Recv Send

Port_in

Port_outPort_in

Port_out

Framework Service

Figure 3. Port-Based Communication

Thanks to this, SimICT is able to schedule lots of components
in parallel and easily change some components without
affecting the others.

Unfortunately, this well-defined isolation produces a
negative effect on the performance. Because all the
component communication must go through the framework, it
takes a relatively long time before completion. In order to
avoid some unnecessary overhead, SimICT framework also
provides another alternative communication mechanism based
on callback functions.

If callback mechanism is used, the receiving component
needs to define a function and register it as callback in the
framework. Then the sending component can directly call this
callback function to complete the communication. Callback
function communication is faster than port-based method.
However, it violates the isolation principle of components.
Therefore, SimICT allows components to use callback
function if it does not affect the parallelization. For example,
the communication is between two components belonging to
the same framework service, or the callback function does not
cause any data race.

3.2.2. Parallelization
Auto-parallelization is one of the key features of SimICT.

Based on port communication, each component is bound to a
framework service. As shown in figure 2, SimICT assigns the
framework services into different host cores, thus components
belonging to different framework services can run in parallel.

This parallelization is transparent to components and does
not affect the implementation of target system simulation. If
the couple of FSs belong to different processes, SimICT uses
MPI-style communication. Otherwise, if they belong to
different threads, Pthread-style is used.

SimICT uses event-driven mode for the timing advance.
For the purpose of parallelization, each framework service has
an independent event queue. The FS can advance its time
freely before arriving at next synchronization point. The
synchronization algorithm is a key factor which affects the
final performance. For SimICT, it supports two kinds of
synchronization mechanism: CMB (Chandy-Misra-Bryant)
algorithm [1] and quantum-based synchronization.

Strict synchronization produces accurate simulation
results. However, it leads to very heavy synchronization
overhead, which will further decrease the speedup results. In
order to avoid this problem, SimICT lets the user to balance
the speed and accuracy. It allows a user-adjusted relaxed
synchronization. For example, a cycle accurate quantum-
based synchronization usually forces the quantum to be as

GUI

Description language

UI config file CONFIGURE *cfg_ptr

config.db

Cfg_ptr

fs fs fs

port

comcomcom comcomcom

port port portport port

components

Topology

Figure 4. Configuration Flow in SimICT Framework

small as possible.
Normally a large synchronization granularity leads to a

better speed, but worse accuracy. However, sometimes it is
necessary to improve the speed at the cost of accuracy. Thus
SimICT allows users to relax the synchronization granularity
for both CMB algorithm and quantum-based method.

Relaxed synchronization means longer synchronization
period, which usually incurs larger accuracy errors. Note that
the functional correctness is still guaranteed as long as the
benchmarks themselves are synchronized correctly.

3.2.3. Configuration
SimICT provides a powerful component-based system

construction method. However, it is still a complicated task to
configure a very large-scale target system. For example, if we
want to simulate many-core architecture with thousands of
cores, we need to instantiate thousands of core components
and connect all of them according to the topology. Besides,
the parameters of each core need to be set correctly.
Obviously this is a very boring and fallible process.

To cope with this problem, SimICT develops a graphic
user interface for the system configuration, with no need for
the use of obscure script languages. The flow of configuration
is shown in figure 4. First, the user instantiates the
components by drag-and-drop operations, and sets the
topology structure by drawing the connecting lines. After that,
SimICT will convert the configuration information into a
record file with intermediate format. When the simulator
starts, it reads in the record file, and saves the information
into a structure which can be found by a pointer cfg_ptr.

The parameters of each component and the mapping
relationship between components and framework services can
also be configured through this graphic interface. SimICT
stores all the configuration information into a binary database
file, and loads it directly next time if the target system is the
same, avoiding the reconfiguration process.

SimICT organizes the configuration information into a
tree structure. It can find the position of each port, component,
and framework service according to the identity number. This
is necessary when handling the communication between
different components.

3.3. Component
SimICT framework provides an infrastructure of the

Figure 5. Example of Router Component Definition

simulator. We still need to implement all the components of
target system. Simulating a large-scale parallel system may
contain hundreds or thousands of components. Therefore, it is
an arduous work to write all the components one by one.
Fortunately, most large-scale systems are homogeneous, or
partly homogeneous. Thus we only need to write one copy of
the code for each type of component. Multiple components
can be instantiated by the user in the graphic interface.

Thus, each component’s code is compiled into a dynamic
link library file. Some commonly used nodes, such as core,
memory, memory controller, and router, exist in SimICT as
dynamic link libraries. Note that, nodes with different
architecture still need to be implemented independently. For
example, there are different dynamic link library files for x86
core and ARM core.

SimICT uses standard interface for components
communication. Furthermore, SimICT makes the definition of
a new component class quite simple. Figure 5 shows an
example of defining a router component class. SimICT
provides some macros as template. Therefore, the user can
easily finish the implementation based on these macros. The
main contents include the name, initial function, finished
function, in ports, out ports, command functions, and
parameters.

3.4. Power Model
As an infrastructure, SimICT supports both full-system

simulation and application level simulation. It also supports
both performance and power evaluation.

When evaluating the power, the users can develop the new
power components. Besides, SimICT also provides a standard
interface to integrate other existing power modeling tools,
such as Wattch [16], Orion [15], and McPAT [18]. These
tools are implemented as power libraries and independent of
the front-end performance components.

It should be noticed that, in addition to the performance
and power models, other modeling tools can also be
integrated into SimICT. For example, thermal models like
HotSpot [17], and other processor models like Qsim [19] are
all compatible with SimICT framework.

4. Example Study
The SimICT framework has been used for study in a

several areas, including multi-core architecture, network-on-
chip (NoC), power/thermal modeling, application analysis and
optimization. In this section, we will give an example of NoC

Figure 6. AXI Network Topology

simulation for performance and power analysis to
demonstrate the usage of SimICT.

4.1. NoC Simulation
We setup a timing model of multi-level AXI network

based on SimICT framework. The goal of this simulation is
to evaluate the performance and power consumption of NoC.
Figure 6 presents the topology of the network. It consists of
256 cores and three-level crossbars. Memory controllers are
connected to level-two crossbar, while every eight cores are
organized into a group and connected by level-three crossbar.

In the experiment, simulation is driven by read/write
operations in trace file. The trace information is converted to
network packets when injecting into the network. Each
crossbar receives the packets, and simulates the channels of
AXI protocol in detail. If the channel is available, the packet
is transmitted to the next level. Otherwise if the channel is
busy, it blocks the packet and forwards the event after a
configured latency.

To model such a network with SimICT framework, we
first define three component classes for cores, crossbars, and
memory controller units respectively. Then we create multiple
components by instantiating them from the classes. After that,
we set the topology structure and initialize the parameters for
each component through the graphic configuration interface.
If we want to simulate the network in parallel, we need to set
the number of threads we want to launch and the mapping
relationship between components and threads. These are all
the tasks we need to do before running the simulator.
Obviously it is much simpler than starting from scratch.
 Parameters Configuration
Target
NoC

clock freq. 1GHz
technology 65nm
architecture AXI protocol, 5 channels, 64-bit

address bus, 128-bit data bus, 2-cycle
latency, round-robin arbitration

Benchmark WordCount Input size: 100MB
TeraSort Input size: 100MB
Search 20MB index file

Table 1. Evaluation Configuration

 Search WordCount TeraSort
Real bandwidth (Gb) 177 205 22.67
Bandwidth ratio (%) 0.82 0.95 0.11
Throughput (G packet/s) 1.23 1.43 0.16
Average response time (cycle) 3.33 17.49 43.09
Average latency (cycle) 34.83 77.17 94.99
Link usage ratio (%) 2.81 3.32 0.37
Waiting time of each packet
(cycle)

2.68 7.40 10.35

Table 2. Results of Performance Evaluation

4.2. NoC Performance Evaluation
We choose threeMapReduce applications as benchmarks:

Search, WordCount, and TeraSort. WordCount and TeraSort
are ported form Phoenix++ [6], and Search is from Xapian
project [20]. The detailed configuration of our evaluation is
shown in table 1.

Table 2 gives some performance results for each
benchmark. Real bandwidth, bandwidth ratio, and throughput
are used to evaluate the overall performance of this network,
while the remaining parameters are used to depict the detailed
characteristic. We can see that, compared with Search and
WordCount, TeraSort gets an obvious performance gap when
running on this kind of network. This is because TeraSort has
much more burst memory access operations. Besides, all the
benchmarks produce a low bandwidth utilization ratio. Thus
we need to take a close-up view of the detailed results. We
see that normally it is not the maximum physical bandwidth
that limits the performance. What we really need to do is to
improve the effective utilization of the bandwidth resource.

4.3. NoC Power Evaluation
To evaluate power consumption of network, we have

integrated Orion [15] into SimICT framework. To keep the
flexibility, Orion is ported independently of the NoC
implementation, thus this power evaluation models can also
be used with other network components together. Parameters
collected in runtime from network components are passed into
Orion power model to produce the power evaluation results.
When providing power consumption information, the Orion
power model is enabled.

To evaluate the power of AXI network structure in Figure
6, Table 3 shows the results of power evaluation. We can see
that power consumption has much to do with the application
characteristic. Among the three benchmarks, the lowest power
is only a little more than 1/4 of the highest one. The results
also show that the power consumption is almost linear with
the packet injection ratio. If fewer packets are injected into
the network, less power would be consumed. For the similar
reason, each crossbar in the lower level consumes larger
power. For example, there is only one crossbar in level one.
However, it consumes more than 10% power for all the three
benchmarks.
 Search WordCount TeraSort
Level 1 (1 crossbar) 2.267 3.494 0.694
Level 2 (4 crossbars) 6.484 9.182 1.828
Level 3 (16 crossbars) 4.484 7.430 3.166
Total 13.235 20.106 5.688

Table 3. Results of Power Evaluation (W)

5. Conclusion and Future Work
This paper presents SimICT, a fast and flexible framework

which aims at performance and power evaluation for large-
scale architecture. There are three key features of this
framework: First, SimICT provides a flexible simulation
based on instantiated components. The standard interface of
components also makes power models easy to be integrated.
Second, it implements an automatic parallel mechanism with
self-defined relaxed synchronization, producing better
performance for large-scale system simulation. Finally, a
visualized configurator is integrated into SimICT, making it
much easier to use compared with other commonly used
methods like script languages.

Based on SimICT, various existing models, such as
performance and power modeling tools, can be integrated to
produce a holistic simulation platform. We believe that
SimICT framework could be an attractive option for
achieving fast and flexible simulation for large-scale parallel
architecture.

There are mainly two directions in our future work. First,
we will continue to optimize the communication and
synchronization of SimICT to further improve the simulation
speed. Second, we are going to develop more components and
integrate more existing models, such as thermal and reliability
tools, into SimICT.

Acknowledgments
This work is supported by the National Grand

Fundamental Research 973 Program of China under Grant No.
2011CB302501, the National Science Foundation for
Distinguished Young Scholars of China under Grant No.
60925009, the Foundation for Innovative Research Groups of
the National Natural Science Foundation of China under
Grant No. 60921002, the Beijing science and technology
plans under Grant No.2010B058 and the National Natural
Science Foundation of China under Grant No.(61173007,
61100013, 61100015, 61204047 and 61202059), the
National High-Tech Research & Development Program of
China（2012AA010303）

References
1. K.M. Chandy and J. Misra. Distributed simulation: A case

study in design and verification of distributed programs.
IEEE Transactions on Software Engineering, SE-
5(5):440–452, Sept. 1979.

2. J. Emer, P. Ahuja, E. Borch, A. Klauser, Chi-Keung Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N.
Binkert, R. Espasa, and T. Juan. Asim: A performance
model framework. IEEE Computer, 35(2):68 – 76,
February 2002.

3. P. S. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A.
Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35:50–58, 2002.

4. J. Engblom. Simics Accelerator. VIRTUTECH White
Paper. 2009.

5. A.F.Rodrigues. The structural simulation toolkit, http://
www.cs.sandia.gov/sst, 2007

6. Justin Talbot, Richard M. Yoo, Christos Kozyrakis.
Phoenix++: Modular MapReduce for Shared-Memory

Systems. Second International Workshop on MapReduce
and its Applications (MAPREDUCE) 2011.

7. Manifold Project. http://manifold.gatech.edu.
8. R.M. Fujimoto. Parallel discrete event simulation.

Commun. ACM, 33(10):30–53, 1990.
9. J. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N.

Beckmann, C. Celio, J. Eastep, and A. Agarwal. Graphite:
A Distributed Parallel Simulator for Multicores. In Proc.
HPCA, 2010.

10. M. Lis, P. Ren, M. Cho, K. Shim, C. Fletcher, O.Khan,
and S. Devadas. Scalable, accurate multicore simulation in
the 1000-core era. IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
April 2011.

11. N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.
Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.
Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, , and D. A. Wood. The gem5 simulator. Computer
Architecture News, 2011.

12. Milo M. K. Martin, Daniel J. Sorin, Bradford M.
Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, David A.
Wood: Multifacet's general execution-driven
multiprocessor simulator (GEMS) toolset. SIGARCH
Computer Architecture News 33(4): 92-99 (2005)

13. E. Argollo, A. Falc´on, P. Faraboschi, M. Monchiero, and
D. Ortega. Cotson: infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp.
52–61, 2009

14. Nikolaos Hardavellas, Stephen Somogyi, Thomas F.
Wenisch, Roland E. Wunderlich, Shelley Chen, Jangwoo
Kim, Babak Falsafi, James C. Hoe, Andreas Nowatzyk:
SimFlex: a fast, accurate, flexible full-system simulation
framework for performance evaluation of server
architecture. SIGMETRICS Performance Evaluation
Review 31(4): 31-34 (2004)

15. S. Singh, C. May_eld, S. Mittal, S. Prabhakar, S.
Hambrusch, and R. Shah. Orion 2.0: native support for
uncertain data. 2008 ACM SIGMOD Int. Conf.
Management of Data. ACM, NY, 2008, pp. 1239-1242.

16. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. 27th Int. Sym. Computer Architecture
(ISCA '00). ACM, NY, 2000, pp. 83-94.

17. K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation. ACM
Trans. Archit. Code Optim. 1, 1 (Mar. 2004), pp. 94-125.

18. S. Li et al. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures. 42nd Ann. IEEE/ACM Int. Sym.
Microarchitecture, 469{480, 2009.

19. C. Kersey, A. Rodrigues, and S. Yalamanchili. A
universal parallel front-end for execution driven
microarchitecture simulation. Proceedings of the 2012
Workshop on Rapid Simulation and Performance
Evaluation Methods and Tools, pages 25–32, 2012.

20. http://xapian.org/

