
FStream: Flexible Stream Scheduling and
Prioritizing in Multipath-QUIC

Xiang Shi∗, Lin Wang†‡, Fa Zhang∗ and Zhiyong Liu∗
∗Institute of Computing Technology, Chinese Academy of Sciences, China

†Vrije Universiteit Amsterdam, The Netherlands
‡Technische Universität Darmstadt, Germany

Email: shixiang@ict.ac.cn, lin.wang@vu.nl, zhangfa@ict.ac.cn, zyliu@ict.ac.cn

Abstract—While the web keeps evolving, web latency remains
a major obstacle to improving user experience. In the past,
many efforts have been made in this course. SPDY1 achieves
reduced latency through multiplexing and prioritization by
manipulating HTTP. Quick UDP Internet Connection (QUIC)
generalizes the idea and embeds multiplexing in the transport
layer by introducing application-oriented streams. Multipath-
QUIC brings further improvements by utilizing multiple paths
as is done in MultiPath TCP (MPTCP). However, failing to
account for stream priorities in the transport layer can result in
suboptimal performance for time-critical streams.

We fill this gap and propose FStream – a flexible stream
scheduling mechanism for Multipath-QUIC, which provides
stream prioritization down to the transport layer. We implement
FStream in Multipath-QUIC and demonstrate its effectiveness
in reducing the completion time of time-critical streams (˜3x)
through extensive experiments under different path dissimilarity
conditions.

Index Terms—QUIC; MPQUIC; multipath; stream schedul-
ing; prioritization; web latency

I. INTRODUCTION

With the increase in the richness of modern web content,

the number of web domains and objects continues to grow

fast. However, web transfer latency still remains as the major

impediment to improving user-perceived performance. Over

the years, many approaches have been proposed. In HTTP/1.0,

a new TCP connection is initiated for every single request,

incurring a dramatic overhead to the overall completion time

due to the slow start of TCP connections. HTTP/1.1 improves

this situation by enabling request pipelining. However, the

request concurrency still suffers from head-of-line (HOL)

blocking problem due to restrictions on the returning order

of responses – a single slow response can block all responses

behind it. To further mitigate HOL blocking, SPDY [2] multi-

plexes HTTP requests over a single TCP connection. However,

since the underlying TCP connection of SPDY requires in-

order transmission, HOL blocking still exists in the transport

X. Shi is also with University of Chinese Academy of Sciences, Beijing,
China. The Corresponding Author is Zhiyong Liu (zyliu@ict.ac.cn). This
work was partially supported by the National Key Research and Development
Program of China (grant number 2017YFB1010001), the National Natural
Science Foundation of China (grant numbers 61520106005, 61761136014).
L. Wang was funded by the German Research Foundation (DFG) project
392046569 and by the subproject C7 within the DFG Collaborative Research
Center 1053 (MAKI).

1SPDY has been subsumed by the HTTP/2 standard [1].

layer. As an important goal, Quick UDP Internet Connection

(QUIC) proposes to bring multiplexing down to the transport

layer [3]. QUIC multiplexes HTTP requests/responses over

UDP by providing each with an application-oriented stream

(stream for short).

Besides HOL blocking, another important issue exists,

which was recognized by SPDY: If the bandwidth of a

channel is limited, the client may block requests to avoid

overwhelming the channel. It may happen that a time-critical

request is blocked by non-critical ones. To overcome this

problem, SPDY adds priorities to requests, where the client

can send unlimited requests with each assigned a priority. Un-

fortunately, many QUIC implementations have not supported

such functionality at this moment and failing to account for

priorities of streams can result in suboptimal performance,

especially for time-critical streams.

To enable handover and aggregate the bandwidth of dif-

ferent paths with QUIC, Multipath-QUIC (MPQUIC) was

proposed [4]. With the stream-multiplexed feature of QUIC,

fine-grained scheduling on multipath can be achieved con-

sidering the different preferences of different streams. In a

default setting, MPQUIC always schedules packets on the

path with the lowest round-trip time (RTT). However, HTTP/2

prioritization is not incorporated into the scheduler since

the streams are treated without differences. As a result of

resource contention, small streams that are responsible for

time-critical requests can be easily blocked by non-critical

requests, especially those long-lived large streams. SA-ECF

[5] makes per-packet scheduling decisions based on stream

completion time estimation and selects from the two paths

with the smallest RTT. However, streams are with different

resource preferences for various application demands. To

illustrate, throughput-sensitive streams prefer high bandwidth

paths to low RTT paths. Current schedulers do not take the

resource preferences of streams into consideration. Therefore,

we argue that treating all the streams undifferentiated can be

suboptimal, and thus affecting the stream completion time.

In this paper, we propose a flexible stream scheduler called

FStream for MPQUIC. Upon a stream arrival, we schedule

the stream to its suitable path. FStream is designed with

three main features: 1) Packets are scheduled on a per-

stream granularity, preventing out-of-order and aggregation

delay brought by multiple paths. 2) Time-critical streams

921

2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-7281-2583-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPADS47876.2019.00136

Connection

Path 1 (PathID 1)
RTT, Bandwidth,

Packet number, …

Stream & Frame
Management

Stream A

Path 2 (PathID 2)
RTT’, Bandwidth’,

Packet number’, …

Stream & Frame
Management

Stream C Stream B

Scheduler

Fig. 1. An overview of an FStream connection. The blocks with dash-line
borders show our modifications.

are prioritized in scheduling and are more likely assigned to

paths with favorable resources. 3) Streams scheduled to the

same path share bandwidth proportionally to their priorities,

preventing the case that streams that are more time-critical are

blocked by the others because of resource contention.

II. FSTREAM DESIGN AND IMPLEMENTATION

In the application layer, a client (i.e. browser) sends requests

to the webserver with each assigned an HTTP/2 priority

(priority for short) [6] between 1 and 255 (inclusive). We use

this value as an indication of the urgency of the corresponding

initiated streams in FStream. Higher priority value means the

client expects it to complete earlier.

Fig. 1 illustrates the main structure of an FStream con-

nection. A connection is established after the cryptographic

handshake of MPQUIC and is identified by a Connection ID

(CID). There can be multiple available paths within a connec-

tion. Each path is scheduled from none to multiple streams

and has a stream manager that manages the transmission of

the streams. A global scheduler is responsible for the stream-

to-path scheduling based on our proposed scheduling policy

that will be detailed in the following.

Scheduler design. The scheduler is designed to schedule

streams to appropriate paths. Note that as the stream depen-

dencies restrict the initiation order of streams, we consider the

path scheduling of concurrently initiated streams each time. In

order to come up with an effective scheduler, we observe the

following principles to be followed by the scheduling policy.

• PRCP-1 Streams with higher priorities should be prior-

itized in the order of being scheduled.

• PRCP-2 Packets of each stream should be scheduled to

follow a single path, preventing stream completion from

being blocked by slow paths.

• PRCP-3 Higher priority streams should be prioritized

over lower priority streams on the same path.

For streams each responsible for an HTTP request, their

sizes are usually known at the server-side before transmis-

sion. Therefore, we can schedule them to appropriate paths

following these principles.

To satisfy PRCP-1, the scheduler sorts the streams in de-

scending order of priority upon arrival of concurrent streams.

According to the priority order, the scheduler performs the

following scheduling procedure one by one. For a stream si,
the scheduler calculates a rough estimate of transmission time

T for the stream on each path pj using the following equation:

T (si, pj) =
SIZE i

bij
+

RTT j

2
(1)

where SIZE i is the object size to be transmitted on stream si,
and RTT j is the estimated round-trip time of the path pj . bij
is the bandwidth share stream si can receive if it is scheduled

to path pj following the proportional sharing principle. We

suppose the sum of priority of all the streams that are already

scheduled onto path pj is SUM j , and the priority value of

stream si is PRT i, and then bij can be calculated by:

bij =
PRT i

SUMj + PRTi
·BWj (2)

where BW j is the smoothed bandwidth estimation of path

pj . This bandwidth-sharing mechanism is designed based on

PRCP-3 to provide prioritization for streams sharing the same

path. After finishing the transmission time estimation, we

choose the suitable path for each stream with the minimum

estimation minT (si, ·), which respects PRCP-2.

Implementation. To validate the effectiveness of our pro-

posal, we complete a proof-of-concept implementation based

on existing MPQUIC open-source implementation written in

Go [7]. We divide the available bandwidth of the path in

proportion to the stream priorities. For streams on the same

path, we achieve the bandwidth-sharing mechanism of the

streams in a probabilistic way. When a path sends data in

one transmission round, we choose a stream to transmit and

we calculate the probability of each stream to be transmitted

on the path. We first obtain the priority sum by adding up the

priority values of all the normal streams on the path. Then,

we divide the priority of the stream by the priority sum to

calculate the probability of the stream to be selected. Arriving

streams will be scheduled to appropriate paths based on their

priorities and sizes. As a starting point, we set up initial values

of RTT and bandwidth based on prior knowledge on creating

a path; other techniques can also be used [8], [9]. During the

transmission, we maintain smoothed RTT estimation values

of each path. The RTT estimation is based on [8] and the

bandwidth estimation is based on [10].

III. EXPERIMENTS

We evaluate our mechanism FStream with comparison to

the original MPQUIC implementation and SA-ECF [5] on the

Mininet emulation platform [11]. To provide a fair assessment

of the compared implementations, we adopt an experimental

design similar to the one used for MPQUIC [4]. We evaluate

the completion time of the concurrently transmitted time-

critical stream and non-critical stream under a wide range of

parameters for available paths.

A. Setup

Network. We consider the same network topology with

two multi-homed hosts over disjoint paths used by [4] [5].

922

1 20 40 60 80 100
Bandwidth (Mbps)

0

0.2

0.4

0.6

0.8

A
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(a)

1 20 40 60 80 100
Bandwidth (Mbps)

0

2

4

6

8

B
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(b)

1 80 160 240 320 400
RTT (ms)

0

0.2

0.4

0.6

0.8

1

A
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(c)

1 80 160 240 320 400
RTT (ms)

0

2

4

6

8

10

B
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(d)

Fig. 2. The impact of path bandwidth and RTT dissimilarity on the completion time of stream A and B respectively: (a) and (b) bandwidth dissimilarity, (c)
and (d) RTT dissimilarity. Each repeated simulation carries a standard deviation value.

(1,1) (20,80) (40,160) (60,240) (80,320)(100,400)
(Bandwidth / Mbps, RTT / ms)

0

0.2

0.4

0.6

0.8

1

A
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(a)

(1,1) (20,80) (40,160) (60,240) (80,320)(100,400)
(Bandwidth / Mbps, RTT / ms)

0

2

4

6

8

10

B
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(b)

(100,1) (80,80) (60,160) (40,240) (20,320) (1,400)
(Bandwidth / Mbps, RTT / ms)

0

0.5

1

1.5

2

A
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(c)

(100,1) (80,80) (60,160) (40,240) (20,320) (1,400)
(Bandwidth / Mbps, RTT / ms)

0

2

4

6

8

10

B
 C

om
pl

et
io

n
T

im
e

(s
)

MPQUIC
FStream

(d)

Fig. 3. The impact of changing both bandwidth and RTT of path #2 at the same time: (a) and (b) each path with its advantage, (c) and (d) one path wins
over the other. Each repeated simulation carries a standard deviation value.

This topology allows us to evaluate multipath-scenarios like

a mobile phone connecting to both Mobile broadband (MBB)

and WIFI at the same time [5]. To evaluate the impact of

path dissimilarity on the performance, we set different kinds

of dissimilarities for the two paths. For each path, we focus

mainly on the bandwidth and RTT of the path. Note that

packet losses caused by router buffer overflow can occur

in these environments. We set the range of bandwidth from

1Mbps to 100Mbps and RTT from 1ms to 400ms [4]. The

maximal receive window is set to 16 MB. We perform our

evaluation on a laptop with an Intel Core i5 Dual-Core CPU

i5-4278U@2.60GHz with 8.0GB RAM.

Bandwidth dissimilarity. We set the bandwidth of path #1

to be 1Mbps and RTT of both paths to be 1ms. We vary the

bandwidth of path #2 from 1Mbps to 100Mbps to increase

the bandwidth dissimilarity of the two paths.

RTT dissimilarity. We set the bandwidth of both paths to be

1Mbps and RTT of path #1 to be 1ms. Then we vary the RTT

of path #2 from 1ms to 400ms to increase RTT dissimilarity.

Bandwidth and RTT dissimilarities. We set up equivalent

initial values of path #1 and path #2, i.e., bandwidth to be

1Mbps and RTT to be 1ms. Firstly, we increase the bandwidth

and RTT values of path #2 at the same time. Secondly, path

#1 and path #2 are set initially with bandwidth to be 1Mbps

and RTT to be 400ms. Then we increase the bandwidth and

decrease the RTT values of path #2 simultaneously.

Traffic. We evaluate the completion time of two concurrently

initiated streams corresponding to two types of web objects

inside a web page. This prioritization strategy (i.e. priority

assignment and the order of initiating streams) is based on the

weighted round-robin mechanism of Safari 11 [6]. The first

is a time-critical small stream A corresponding to an HTML

document, with 26 KB size and priority value to be 255. The

second is a delay-tolerant big stream B corresponding to an

image, with 900KB size and priority value to be 8. The client

measures the completion time of a stream by recording the

time elapsed between the initiation of the request and the

reception of the last byte of the corresponding stream. Each

simulation is repeated 6 times for all the schedulers, and we

analyze the average values.

B. Experimental Results

Fig. 2(a)(c) and Fig. 3(a)(c) illustrate the completion time of

the time-critical small stream A. We can observe that FStream

performs better than the original mechanism of MPQUIC in

general. With prioritization enabled, FStream is especially
beneficial for reducing the completion time of time-critical
transmissions. The reason is that in FStream, stream A is pri-

oritized in resource sharing and scheduling order ensuring that

it will not be blocked by the non-critical stream. Meanwhile,

packets of stream A are scheduled to follow a single path,

thus preventing aggregation delay brought by multiple paths.

In MPQUIC, packets of stream A are always transmitted

on the path with available window and lower RTT, thus the

packets can be distributed over the two paths. As a result, the

completion time can suffer from significant fluctuation in the

repeated simulations. In Fig. 3(c), the performance differences

are less evident than the other figures of stream A, which

is due to the overall advantage of path #2 over path #1. In

this case, MPQUIC chooses mostly path #2 for transmission,

while FStream schedules stream A on path #2. When the

advantage of path #2 is getting weaker along the x-axis of

923

(1,1) (20,80) (40,160) (60,240) (80,320)(100,400)
(Bandwidth / Mbps, RTT / ms)

0

0.1

0.2

0.3

0.4

A
 C

om
pl

et
io

n
T

im
e

(s
)

FStream
SA-ECF

(a)

(1,1) (20,80) (40,160) (60,240) (80,320)(100,400)
(Bandwidth / Mbps, RTT / ms)

0

2

4

6

8

10

B
 C

om
pl

et
io

n
T

im
e

(s
)

FStream
SA-ECF

(b)

Fig. 4. Performance results of FStream and SA-ECF with path dissimilarities
of both bandwidth and RTT : (a) the completion time of stream A, and (b)
the completion time of stream B.

Fig. 3(c), MPQUIC chooses path #2 at a reduced chance for

each packet, and FStream still schedules stream A on path

#2 for the advantage, thus the performance differences are

becoming more evident.
Fig. 2(b)(d) and Fig. 3(b)(d) depicts the completion time

of the big stream B with low priority. We can see that in

most cases, the completion time of stream B is reduced as

well as stream A. However, there are cases that FStream

performs not as good as MPQUIC for stream B. This can

happen in the situations that the bandwidths of the two paths

are homogeneous (i.e. Fig. 2(d), the first bar in Fig. 2(b) and

Fig. 3(b), and the last bar in Fig. 3(d)). The reason is that due

to the mechanism of FStream, stream B is scheduled to the

other path and cannot utilize the path occupied by A to avoid

bandwidth contention. This is due to the considerations that

the design rationale of FStream is to sacrifice the completion

time of a non-critical stream as a tradeoff to avoid resource

contention between streams that can affect the completion

time of a time-critical stream.

C. Comparison to SA-ECF
Following the same experiment settings, we also conduct

experiments to compare the performance differences between

FStream and SA-ECF. SA-ECF [5] provides a packet sched-

uler for MPQUIC to avoid transmission delayed by slower

paths. For each packet, SA-ECF first chooses two paths: One

path is with the lowest RTT and not necessarily to be an

available path, while the other is an available path with the

lowest RTT. Then SA-ECF estimates the completion time of

the stream to which the packet belongs on two paths, and

schedules the packet to the path with the lowest estimated

time. Fig. 4 shows the results of FStream and SA-ECF. It

is clearly shown that the overall performance of FStream

is better than those of SA-ECF. In the cases with path

heterogeneity, FStream reduces the completion time of stream

A as well as stream B, for each stream is scheduled to its

favorable path. While in SA-ECF, packets of two streams can

share the bandwidth of the same path, leading to bandwidth

contention between stream A and B. Meanwhile, the packets

of stream B can be transmitted on path #1 with the lower

bandwidth, leading to a longer completion time. In the case

that paths are homogeneous (i.e. the first bars in Fig. 4),

FStream reduces the completion time of stream A, but it

deteriorates the completion time of stream B. This is because

FStream sacrifices the bandwidth aggregation of a non-critical

stream to trade for a performance gain for a time-critical

stream.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a flexible stream scheduling

mechanism, FStream, for MPQUIC. FStream provides stream

prioritization at the transport layer, preventing streams that are

responsible for time-critical requests from being blocked by

non-critical requests. A proof-of-concept implementation and

extensive experiments proved the effectiveness of FStream,
showing that it outperforms the original scheduling mecha-

nism of MPQUIC in reducing the completion time of time-

critical streams in different path heterogeneity. As to future

work, we are interested in extending FStream to provide

improvements for throughput-sensitive streams, and we will

explore the performance of FStream when being coupled with

different prioritization strategies of different browsers.

REFERENCES

[1] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext transfer
protocol version 2 (HTTP/2). RFC, 7540:1–96, 2015.

[2] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. How speedy is spdy? In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 387–399, 2014.

[3] Adam Langley et al. The QUIC transport protocol: Design and internet-
scale deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pages 183–196, 2017.

[4] Quentin De Coninck and Olivier Bonaventure. Multipath QUIC: design
and evaluation. In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies, CoNEXT 2017,
Incheon, Republic of Korea, December 12 - 15, 2017, pages 160–166,
2017.

[5] Alexander Rabitsch, Per Hurtig, and Anna Brunström. A stream-
aware multipath QUIC scheduler for heterogeneous paths: Paper #
xxx, XXX pages. In Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, EPIQ@CoNEXT 2018,
Heraklion, Greece, December 4, 2018, pages 29–35, 2018.

[6] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. HTTP/2
prioritization and its impact on web performance. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, WWW 2018,
Lyon, France, April 23-27, 2018, pages 1755–1764, 2018.

[7] De Coninck Q et al. https://github.com/qdeconinck/mp-quic.
[8] Van Jacobson. Congestion avoidance and control. In SIGCOMM ’88,

Proceedings of the ACM Symposium on Communications Architectures
and Protocols, Stanford, CA, USA, August 16-18, 1988, pages 314–329,
1988.

[9] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, and Ren
Wang. TCP westwood: End-to-end congestion control for wired/wireless
networks. Wireless Networks, 8(5):467–479, 2002.

[10] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. BBR: congestion-based congestion control.
ACM Queue, 14(5):20–53, 2016.

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. Reproducible network experiments using
container-based emulation. In Conference on emerging Networking
Experiments and Technologies, CoNEXT ’12, Nice, France - December
10 - 13, 2012, pages 253–264, 2012.

924

